Dynamical systems analysis applied to working memory data.

Fidan Gasimova, Alexander Robitzsch, Oliver Wilhelm, Steven M Boker, Yueqin Hu, Gizem Hülür
Author Information
  1. Fidan Gasimova: Department of Psychology, Ulm University Ulm, Germany.
  2. Alexander Robitzsch: Federal Institute for Education Research, Innovation and Development of the Austrian Schooling System (BIFIE Salzburg) Salzburg, Austria.
  3. Oliver Wilhelm: Department of Psychology, Ulm University Ulm, Germany.
  4. Steven M Boker: Department of Psychology, University of Virginia Charlottesville, VA, USA.
  5. Yueqin Hu: Department of Psychology, Texas State University San Marcos, TX, USA.
  6. Gizem Hülür: Department of Psychology, Humboldt University Berlin, Germany.

Abstract

In the present paper we investigate weekly fluctuations in the working memory capacity (WMC) assessed over a period of 2 years. We use dynamical system analysis, specifically a second order linear differential equation, to model weekly variability in WMC in a sample of 112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with missing data. The results show a significant negative frequency parameter in the data, indicating a cyclical pattern in weekly memory updating performance across time. We use a multilevel modeling approach to capture individual differences in model parameters and find that a higher initial performance level and a slower improvement at the MU task is associated with a slower frequency of oscillation. Additionally, we conduct a simulation study examining the analysis procedure's performance using different numbers of B-spline knots and values of time delay embedding dimensions. Results show that the number of knots in the B-spline imputation influence accuracy more than the number of embedding dimensions.

Keywords

References

  1. J Exp Psychol Learn Mem Cogn. 2009 Jul;35(4):1089-1096 [PMID: 19586272]
  2. J Gerontol B Psychol Sci Soc Sci. 2004 Mar;59(2):P49-55 [PMID: 15014087]
  3. Psychol Methods. 2014 Mar;19(1):56-71 [PMID: 23646992]
  4. Biometrics. 1982 Dec;38(4):963-74 [PMID: 7168798]
  5. Neuropsychology. 2000 Oct;14(4):588-98 [PMID: 11055261]
  6. Psychometrika. 2010 Mar;75(1):158-175 [PMID: 23335820]
  7. Psychol Methods. 2009 Dec;14(4):367-86 [PMID: 19968398]
  8. Multivariate Behav Res. 2011 Nov 30;46(6):985-93 [PMID: 26736120]
  9. J Gerontol B Psychol Sci Soc Sci. 2004 Jul;59(4):P158-67 [PMID: 15294919]
  10. Psychol Aging. 2005 Dec;20(4):623-33 [PMID: 16420137]
  11. Multivariate Behav Res. 2002 Jan 1;37(1):127-60 [PMID: 26824172]
  12. Multivariate Behav Res. 2011 Nov 30;46(6):956-84 [PMID: 26736119]
  13. Trends Cogn Sci. 2003 Aug;7(8):343-348 [PMID: 12907229]
  14. Psychol Aging. 2006 Sep;21(3):590-9 [PMID: 16953720]
  15. Emotion. 2012 Jun;12(3):605-17 [PMID: 21787075]
  16. Br J Math Stat Psychol. 2013 Feb;66(1):103-26 [PMID: 22420323]
  17. J Gerontol B Psychol Sci Soc Sci. 2006 May;61(3):P144-51 [PMID: 16670183]
  18. Psychol Methods. 2012 Dec;17(4):567-81 [PMID: 22924600]
  19. Multivariate Behav Res. 2010 Aug 6;45(4):725-45 [PMID: 26735716]
  20. Psychol Aging. 2009 Dec;24(4):778-91 [PMID: 20025395]

Word Cloud

Created with Highcharts 10.0.0dataanalysisB-splineweeklymemoryuseimputationperformanceworkingWMCdynamicalmodelvariabilitylongitudinalshowfrequencytimeslowersimulationstudyknotsembeddingdimensionsnumbersystemspresentpaperinvestigatefluctuationscapacityassessedperiod2yearssystemspecificallysecondorderlineardifferentialequationsample1129thgradersmethoddealmissingresultssignificantnegativeparameterindicatingcyclicalpatternupdatingacrossmultilevelmodelingapproachcaptureindividualdifferencesparametersfindhigherinitiallevelimprovementMUtaskassociatedoscillationAdditionallyconductexaminingprocedure'susingdifferentnumbersvaluesdelayResultsinfluenceaccuracyDynamicalappliedintensiveintraindividual

Similar Articles

Cited By