16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization.

Marie Ragon, Karim Benzerara, David Moreira, Rosaluz Tavera, Purificación López-García
Author Information
  1. Marie Ragon: Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7590, MNHN, IRD UMR 206 Paris, France ; Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique CNRS UMR8079, Université Paris-Sud Orsay, France.
  2. Karim Benzerara: Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7590, MNHN, IRD UMR 206 Paris, France.
  3. David Moreira: Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique CNRS UMR8079, Université Paris-Sud Orsay, France.
  4. Rosaluz Tavera: Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México DF Mexico, Mexico.
  5. Purificación López-García: Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique CNRS UMR8079, Université Paris-Sud Orsay, France.

Abstract

Cyanobacteria are mainly thought to induce carbonate precipitation extracellularly via their photosynthetic activity combined with the nucleation potential of exopolymeric substances. The discovery in microbialites of the alkaline lake Alchichica (Mexico) of Candidatus Gloeomargarita lithophora, a cyanobacterium forming large amounts of intracellular Mg-Ca-Sr-Ba carbonate spherules, showed that intracellular biomineralization in cyanobacteria is also possible. A second cyanobacterium isolated from the same environment, Candidatus Synechococcus calcipolaris G9, has been recently shown to also form intracellular calcium carbonates at the cell poles, a capability shared by all cultured species of the Thermosynechococcus clade, to which it belongs. To explore the diversity of these two distant cyanobacterial lineages representing two different patterns of intracellular calcification, we designed specific primers against their 16S rRNA genes and looked for their occurrence in a wide variety of samples. We identified the presence of members of the Gloeomargarita and Thermosynechococcus/S. calcipolaris lineages in microbialites collected from Lake Alchichica and three other neighboring Mexican lakes. The two clades also occurred in karstic areas and in some thermophilic or hypersaline microbial mats collected in South America and/or Southern Europe. Surprisingly, the within-group diversity in the two clades was low, especially within the S. calcipolaris clade, with all 16S rRNA gene sequences retrieved sharing more than 97% identity. This suggests that these clades are composed of a limited number of operational taxonomic units (OTUs) with cosmopolitan distribution. Moreover, scanning electron microscopy coupled with energy dispersive x-ray spectrometry showed the presence of intracellularly calcifying Gloeomargarita-like cyanobacteria in fresh samples where this clade was relatively abundant, suggesting that these cyanobacteria do precipitate carbonates intracellularly under natural conditions.

Keywords

References

  1. Curr Opin Cell Biol. 2012 Aug;24(4):490-5 [PMID: 22726584]
  2. ISME J. 2013 Oct;7(10):1997-2009 [PMID: 23804151]
  3. Int J Syst Evol Microbiol. 2001 May;51(Pt 3):861-871 [PMID: 11411708]
  4. Microbiology (Reading). 1996 Sep;142 ( Pt 9):2341-54 [PMID: 8828202]
  5. Nat Rev Microbiol. 2006 Feb;4(2):102-12 [PMID: 16415926]
  6. Environ Microbiol. 2001 Feb;3(2):123-30 [PMID: 11321542]
  7. PLoS One. 2013 Jun 18;8(6):e66323 [PMID: 23823729]
  8. Curr Microbiol. 1999 Jul;39(1):53-7 [PMID: 10387118]
  9. Geobiology. 2009 Dec;7(5):566-76 [PMID: 19796131]
  10. Nature. 2000 Aug 31;406(6799):989-92 [PMID: 10984051]
  11. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  12. J Colloid Interface Sci. 2011 Aug 1;360(1):100-9 [PMID: 21549386]
  13. Trends Microbiol. 2005 Sep;13(9):429-38 [PMID: 16087339]
  14. Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):10933-8 [PMID: 25009182]
  15. Science. 2001 Jun 1;292(5522):1701-4 [PMID: 11387471]
  16. Angew Chem Int Ed Engl. 2003 Feb 10;42(6):614-41 [PMID: 12574993]
  17. J Biol Chem. 2003 Aug 8;278(32):29971-8 [PMID: 12783865]
  18. Limnol Oceanogr. 1997 Jan;42(1):133-41 [PMID: 11541205]
  19. Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1053-8 [PMID: 23277585]
  20. Science. 2002 Aug 9;297(5583):1013-5 [PMID: 12169733]
  21. Microbiol Mol Biol Rev. 2013 Sep;77(3):497-526 [PMID: 24006473]
  22. DNA Res. 2002 Aug 31;9(4):123-30 [PMID: 12240834]
  23. Science. 2012 Apr 27;336(6080):427-8 [PMID: 22539710]
  24. Appl Environ Microbiol. 2003 Apr;69(4):2182-93 [PMID: 12676699]
  25. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  26. Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9440-5 [PMID: 16772379]
  27. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  28. Appl Environ Microbiol. 2003 Aug;69(8):4901-9 [PMID: 12902285]
  29. Science. 2012 Apr 27;336(6080):459-62 [PMID: 22539718]
  30. Science. 1961 Sep 1;134(3479):616-7 [PMID: 13725365]
  31. J Bacteriol. 2013 Aug;195(15):3309-19 [PMID: 23687278]
  32. Mol Biol Evol. 2011 Nov;28(11):3019-32 [PMID: 21652613]
  33. Geobiology. 2012 Nov;10(6):518-30 [PMID: 22925453]
  34. Science. 2002 May 10;296(5570):1071-7 [PMID: 12004119]
  35. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  36. PLoS One. 2011;6(12):e28767 [PMID: 22194908]
  37. Appl Environ Microbiol. 2000 Oct;66(10):4222-9 [PMID: 11010863]

Word Cloud

Created with Highcharts 10.0.0intracellulartwocarbonateGloeomargaritacyanobacteriaalsocalcipolariscladediversitylineages16ScladesmicrobialitesAlchichicaCandidatuscyanobacteriumshowedbiomineralizationcarbonatesThermosynechococcuscyanobacterialpatternsrRNAoccurrencesamplespresencecollectedthermophilicmicrobiallimitedcosmopolitanintracellularlyCyanobacteriamainlythoughtinduceprecipitationextracellularlyviaphotosyntheticactivitycombinednucleationpotentialexopolymericsubstancesdiscoveryalkalinelakeMexicolithophoraforminglargeamountsMg-Ca-Sr-BaspherulespossiblesecondisolatedenvironmentSynechococcusG9recentlyshownformcalciumcellpolescapabilitysharedculturedspeciesbelongsexploredistantrepresentingdifferentcalcificationdesignedspecificprimersgeneslookedwidevarietyidentifiedmembersThermosynechococcus/SLakethreeneighboringMexicanlakesoccurredkarsticareashypersalinematsSouthAmericaand/orSouthernEuropeSurprisinglywithin-grouplowespeciallywithinSgenesequencesretrievedsharing97%identitysuggestscomposednumberoperationaltaxonomicunitsOTUsdistributionMoreoverscanningelectronmicroscopycoupledenergydispersivex-rayspectrometrycalcifyingGloeomargarita-likefreshrelativelyabundantsuggestingprecipitatenaturalconditionsrDNA-basedanalysisrevealscontrastedmineralizationmatstromatolite

Similar Articles

Cited By