Differential retention and divergent resolution of duplicate genes following whole-genome duplication.

Casey L McGrath, Jean-Francois Gout, Parul Johri, Thomas G Doak, Michael Lynch
Author Information
  1. Casey L McGrath: Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
  2. Jean-Francois Gout: Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
  3. Parul Johri: Department of Biology, Indiana University, Bloomington, Indiana 47408, USA;
  4. Thomas G Doak: Department of Biology, Indiana University, Bloomington, Indiana 47408, USA; National Center for Genome Analysis Support at Indiana University, Bloomington, Indiana 47408, USA.
  5. Michael Lynch: Department of Biology, Indiana University, Bloomington, Indiana 47408, USA; milynch@indiana.edu.

Abstract

The Paramecium aurelia complex is a group of 15 species that share at least three past whole-genome duplications (WGDs). The macronuclear genome sequences of P. biaurelia and P. sexaurelia are presented and compared to the published sequence of P. tetraurelia. Levels of duplicate-gene retention from the recent WGD differ by > 10% across species, with P. sexaurelia losing significantly more genes than P. biaurelia or P. tetraurelia. In addition, historically high rates of gene conversion have homogenized WGD paralogs, probably extending the paralogs' lifetimes. The probability of duplicate retention is positively correlated with GC content and expression level; ribosomal proteins, transcription factors, and intracellular signaling proteins are overrepresented among maintained duplicates. Finally, multiple sources of evidence indicate that P. sexaurelia diverged from the two other lineages immediately following, or perhaps concurrent with, the recent WGD, with approximately half of gene losses between P. tetraurelia and P. sexaurelia representing divergent gene resolutions (i.e., silencing of alternative paralogs), as expected for random duplicate loss between these species. Additionally, though P. biaurelia and P. tetraurelia diverged from each other much later, there are still more than 100 cases of divergent resolution between these two species. Taken together, these results indicate that divergent resolution of duplicate genes between lineages acts to reinforce reproductive isolation between species in the Paramecium aurelia complex.

References

  1. Science. 2013 Dec 20;342(6165):1241089 [PMID: 24357323]
  2. Nat Rev Genet. 2010 Feb;11(2):97-108 [PMID: 20051986]
  3. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  4. Nature. 1997 Jun 12;387(6634):708-13 [PMID: 9192896]
  5. J Mol Evol. 2008 Oct;67(4):343-57 [PMID: 18815825]
  6. Genetics. 2008 Jul;179(3):1681-92 [PMID: 18562662]
  7. Trends Genet. 2010 Aug;26(8):345-52 [PMID: 20594608]
  8. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2730-5 [PMID: 16467140]
  9. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  10. Dev Suppl. 1994;:125-33 [PMID: 7579513]
  11. Science. 2009 Jan 30;323(5914):623-6 [PMID: 19179528]
  12. Proc Natl Acad Sci U S A. 2007 May 15;104(20):8397-402 [PMID: 17494770]
  13. Genome Biol Evol. 2010;2:826-34 [PMID: 20966100]
  14. Bioessays. 2002 Feb;24(2):175-84 [PMID: 11835282]
  15. Gen Comp Endocrinol. 2013 Oct 1;192:237-45 [PMID: 23770021]
  16. Nature. 2008 Jan 17;451(7176):359-62 [PMID: 18202663]
  17. Mol Biol Evol. 2009 May;26(5):1067-72 [PMID: 19218282]
  18. Nat Biotechnol. 2013 Jan;31(1):46-53 [PMID: 23222703]
  19. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  20. Curr Biol. 2005 Jun 7;15(11):1016-21 [PMID: 15936271]
  21. Mol Biol Evol. 2009 Feb;26(2):421-31 [PMID: 19023087]
  22. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  23. Bioinformatics. 2008 Mar 1;24(5):637-44 [PMID: 18218656]
  24. Bioinformatics. 2008 Dec 15;24(24):2818-24 [PMID: 18952627]
  25. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2967-71 [PMID: 20080574]
  26. Genetics. 2008 Sep;180(1):517-31 [PMID: 18757945]
  27. Nucleic Acids Res. 1987 Feb 11;15(3):1281-95 [PMID: 3547335]
  28. Science. 2006 Sep 8;313(5792):1448-50 [PMID: 16960009]
  29. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19339-44 [PMID: 23129619]
  30. Genetics. 2001 Oct;159(2):907-11 [PMID: 11693127]
  31. Annu Rev Genomics Hum Genet. 2009;10:285-311 [PMID: 19630562]
  32. Trends Genet. 2003 Feb;19(2):65-8 [PMID: 12547511]
  33. Trends Genet. 2008 Aug;24(8):390-7 [PMID: 18585818]
  34. PLoS Biol. 2010 Jun 29;8(6):e1000409 [PMID: 20613864]
  35. Evolution. 2005 Jul;59(7):1389-99 [PMID: 16153025]
  36. Genetics. 2014 Aug;197(4):1417-28 [PMID: 24840360]
  37. Genetics. 2001 Dec;159(4):1789-804 [PMID: 11779815]
  38. Genome Res. 2006 Jun;16(6):796-803 [PMID: 16672307]
  39. Genome Res. 2012 Dec;22(12):2427-35 [PMID: 22835904]
  40. J Hered. 2009 Sep-Oct;100(5):605-17 [PMID: 19596713]
  41. Nature. 2006 Nov 9;444(7116):171-8 [PMID: 17086204]
  42. Genome Res. 2006 Jul;16(7):805-14 [PMID: 16818725]
  43. Nature. 2008 Jun 19;453(7198):1064-71 [PMID: 18563158]
  44. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20417-22 [PMID: 21048083]
  45. Nucleic Acids Res. 2013 Jan;41(Database issue):D377-86 [PMID: 23193289]
  46. Genetics. 1999 Apr;151(4):1531-45 [PMID: 10101175]
  47. Annu Rev Genet. 2004;38:615-43 [PMID: 15568988]
  48. Bioessays. 2005 Sep;27(9):937-45 [PMID: 16108068]
  49. Genome Res. 2006 Jul;16(7):934-46 [PMID: 16760422]
  50. Nat Genet. 2005 Jun;37(6):566-7 [PMID: 15920515]
  51. PLoS Genet. 2010 May 13;6(5):e1000944 [PMID: 20485561]
  52. Nature. 2003 Jul 10;424(6945):194-7 [PMID: 12853957]
  53. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13627-32 [PMID: 12374856]
  54. Nature. 2011 May 5;473(7345):97-100 [PMID: 21478875]
  55. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1494-9 [PMID: 20080642]
  56. Genome Res. 1999 Sep;9(9):868-77 [PMID: 10508846]
  57. Genome Biol. 2013 Apr 25;14(4):R36 [PMID: 23618408]
  58. Genome Res. 2000 Dec;10(12):1890-902 [PMID: 11116085]
  59. Genetics. 1987 Nov;117(3):543-57 [PMID: 3692140]
  60. Mol Biol Evol. 2008 Jun;25(6):1003-6 [PMID: 18296698]
  61. BMC Evol Biol. 2010 May 18;10:145 [PMID: 20478072]
  62. Genome Dyn. 2008;4:25-40 [PMID: 18756075]
  63. Nucleic Acids Res. 2011 Jan;39(Database issue):D632-6 [PMID: 20952411]
  64. Am Nat. 2000 Dec;156(6):590-605 [PMID: 29592543]
  65. Nat Genet. 2005 Jun;37(6):630-5 [PMID: 15864308]
  66. Nature. 2006 Mar 16;440(7082):341-5 [PMID: 16541074]
  67. Proc Biol Sci. 1994 May 23;256(1346):119-24 [PMID: 8029240]
  68. Trends Genet. 2005 Apr;21(4):219-26 [PMID: 15797617]
  69. Nat Rev Genet. 2009 Oct;10(10):725-32 [PMID: 19652647]
  70. Genetics. 2004 Mar;166(3):1553-60 [PMID: 15082568]
  71. Genome Res. 2008 Apr;18(4):585-96 [PMID: 18256234]
  72. BMC Bioinformatics. 2009 Dec 15;10:421 [PMID: 20003500]
  73. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  74. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  75. Trends Genet. 2005 Oct;21(10):559-67 [PMID: 16099069]

Grants

  1. T32 GM007757/NIGMS NIH HHS

MeSH Term

Evolution, Molecular
Gene Conversion
Gene Duplication
Genome, Protozoan
Paramecium aurelia
Phylogeny
Sequence Alignment

Word Cloud

Created with Highcharts 10.0.0PspeciessexaureliatetraureliaduplicatedivergentbiaureliaretentionWGDgenesgeneresolutionParameciumaureliacomplexwhole-genomerecentparalogsproteinsindicatedivergedtwolineagesfollowinggroup15shareleastthreepastduplicationsWGDsmacronucleargenomesequencespresentedcomparedpublishedsequenceLevelsduplicate-genediffer>10%acrosslosingsignificantlyadditionhistoricallyhighratesconversionhomogenizedprobablyextendingparalogs'lifetimesprobabilitypositivelycorrelatedGCcontentexpressionlevelribosomaltranscriptionfactorsintracellularsignalingoverrepresentedamongmaintainedduplicatesFinallymultiplesourcesevidenceimmediatelyperhapsconcurrentapproximatelyhalflossesrepresentingresolutionsiesilencingalternativeexpectedrandomlossAdditionallythoughmuchlaterstill100casesTakentogetherresultsactsreinforcereproductiveisolationDifferentialduplication

Similar Articles

Cited By