Whole-genome duplication in teleost fishes and its evolutionary consequences.

Stella M K Glasauer, Stephan C F Neuhauss
Author Information
  1. Stella M K Glasauer: Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.

Abstract

Whole-genome duplication (WGD) events have shaped the history of many evolutionary lineages. One such duplication has been implicated in the evolution of teleost fishes, by far the most species-rich vertebrate clade. After initial controversy, there is now solid evidence that such event took place in the common ancestor of all extant teleosts. It is termed teleost-specific (TS) WGD. After WGD, duplicate genes have different fates. The most likely outcome is non-functionalization of one duplicate gene due to the lack of selective constraint on preserving both. Mechanisms that act on preservation of duplicates are subfunctionalization (partitioning of ancestral gene functions on the duplicates), neofunctionalization (assigning a novel function to one of the duplicates) and dosage selection (preserving genes to maintain dosage balance between interconnected components). Since the frequency of these mechanisms is influenced by the genes' properties, there are over-retained classes of genes, such as highly expressed ones and genes involved in neural function. The consequences of the TS-WGD, especially its impact on the massive radiation of teleosts, have been matter of controversial debate. It is evident that gene duplications are crucial for generating complexity and that WGDs provide large amounts of raw material for evolutionary adaptation and innovation. However, it is less clear whether the TS-WGD is directly linked to the evolutionary success of teleosts and their radiation. Recent studies let us conclude that TS-WGD has been important in generating teleost complexity, but that more recent ecological adaptations only marginally related to TS-WGD might have even contributed more to diversification. It is likely, however, that TS-WGD provided teleosts with diversification potential that can become effective much later, such as during phases of environmental change.

References

  1. Genome Res. 2009 Nov;19(11):2036-51 [PMID: 19704032]
  2. Science. 2002 Aug 23;297(5585):1301-10 [PMID: 12142439]
  3. Development. 2001 Jul;128(13):2471-84 [PMID: 11493564]
  4. Trends Genet. 2003 Mar;19(3):141-7 [PMID: 12615008]
  5. Nucleic Acids Res. 2007 Jan;35(Database issue):D332-8 [PMID: 17090588]
  6. Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21593-8 [PMID: 21115821]
  7. BMC Res Notes. 2009 Aug 05;2:159 [PMID: 19656397]
  8. Nature. 2007 Sep 27;449(7161):463-7 [PMID: 17721507]
  9. BMC Genet. 2009 Aug 18;10:46 [PMID: 19689812]
  10. Nature. 2008 Sep 4;455(7209):105-8 [PMID: 18641631]
  11. Nat Rev Genet. 2011 Dec 06;13(1):59-69 [PMID: 22143240]
  12. Mol Biol Evol. 2006 Jun;23(6):1192-202 [PMID: 16547150]
  13. Evolution. 2007 May;61(5):995-1016 [PMID: 17492956]
  14. Nature. 2007 Jun 7;447(7145):714-9 [PMID: 17554307]
  15. Nat Genet. 2013 May;45(5):567-72 [PMID: 23542700]
  16. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9 [PMID: 15800040]
  17. Nature. 1978 Mar 2;272(5648):76-8 [PMID: 628437]
  18. Mol Biol Evol. 2004 Jun;21(6):1042-56 [PMID: 15014174]
  19. J Exp Zool B Mol Dev Evol. 2007 Dec 15;308(6):730-43 [PMID: 17708537]
  20. Genetics. 2000 Jan;154(1):459-73 [PMID: 10629003]
  21. Mol Biol Evol. 2005 Dec;22(12):2444-56 [PMID: 16120808]
  22. Genetica. 2009 Sep;137(1):19-37 [PMID: 19266289]
  23. BMC Evol Biol. 2007 Aug 15;7:139 [PMID: 17697377]
  24. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3675-80 [PMID: 16505358]
  25. Science. 1972 Feb 11;175(4022):644-6 [PMID: 5009763]
  26. Am J Bot. 2009 Jan;96(1):336-48 [PMID: 21628192]
  27. PLoS One. 2013;8(1):e53299 [PMID: 23341937]
  28. Nat Rev Genet. 2010 Feb;11(2):97-108 [PMID: 20051986]
  29. Nat Rev Genet. 2007 Mar;8(3):206-16 [PMID: 17304246]
  30. Dev Dyn. 2013 Nov;242(11):1236-49 [PMID: 23908157]
  31. Mol Biol Evol. 2005 Dec;22(12):2417-27 [PMID: 16093565]
  32. BMC Evol Biol. 2007 Mar 30;7:49 [PMID: 17394664]
  33. BMC Evol Biol. 2010 Apr 29;10:117 [PMID: 20429920]
  34. Nat Rev Genet. 2007 Oct;8(10):762-75 [PMID: 17846636]
  35. BMC Evol Biol. 2009 Jun 05;9:127 [PMID: 19500364]
  36. Genome Res. 2003 Mar;13(3):382-90 [PMID: 12618368]
  37. Nat Genet. 1997 May;16(1):79-83 [PMID: 9140399]
  38. Nucleic Acids Res. 1988 Oct 11;16(19):9097-111 [PMID: 2902580]
  39. Mol Biol Evol. 2009 Jan;26(1):47-59 [PMID: 18842688]
  40. J Exp Biol. 1999 May;202(# (Pt 10)):1167-83 [PMID: 10210659]
  41. Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8333-8 [PMID: 18541921]
  42. Mol Phylogenet Evol. 1996 Apr;5(2):309-22 [PMID: 8728389]
  43. Biochem Genet. 1977 Dec;15(11-12):1097-112 [PMID: 603616]
  44. Semin Cell Dev Biol. 2013 Feb;24(2):83-94 [PMID: 23291262]
  45. Science. 1998 Nov 27;282(5394):1711-4 [PMID: 9831563]
  46. PLoS One. 2012;7(2):e32231 [PMID: 22384188]
  47. PLoS Biol. 2005 Oct;3(10):e314 [PMID: 16128622]
  48. J Exp Biol. 2002 Jan;205(Pt 2):211-24 [PMID: 11821487]
  49. Mol Biol Evol. 2007 Mar;24(3):860-7 [PMID: 17218642]
  50. Development. 1998 Feb;125(3):407-20 [PMID: 9425136]
  51. Nature. 2004 Apr 8;428(6983):617-24 [PMID: 15004568]
  52. J Comp Neurol. 2013 May 1;521(7):1533-60 [PMID: 23047810]
  53. Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22172-7 [PMID: 21127261]
  54. Nature. 2006 Nov 9;444(7116):171-8 [PMID: 17086204]
  55. Trends Genet. 2006 Apr;22(4):203-10 [PMID: 16517001]
  56. Dev Genes Evol. 2011 Jun;221(2):95-104 [PMID: 21556854]
  57. J Mol Evol. 2002 Jul;55(1):14-23 [PMID: 12165839]
  58. Mol Biol Evol. 2012 Oct;29(10):3005-22 [PMID: 22490820]
  59. Genome Res. 2006 Jul;16(7):805-14 [PMID: 16818725]
  60. Genome Res. 2009 Aug;19(8):1404-18 [PMID: 19439512]
  61. Nat Rev Genet. 2008 Dec;9(12):938-50 [PMID: 19015656]
  62. Genome Res. 1999 Apr;9(4):334-47 [PMID: 10207156]
  63. Nature. 2008 Jun 19;453(7198):1064-71 [PMID: 18563158]
  64. Mol Cell Biol. 1998 Jan;18(1):93-101 [PMID: 9418857]
  65. Trends Genet. 2004 Oct;20(10):481-90 [PMID: 15363902]
  66. PLoS One. 2007 Jan 24;2(1):e169 [PMID: 17245445]
  67. Philos Trans R Soc Lond B Biol Sci. 2001 Oct 29;356(1414):1661-79 [PMID: 11604130]
  68. Genetics. 1987 Aug;116(4):579-91 [PMID: 3623080]
  69. Genetics. 1999 Apr;151(4):1531-45 [PMID: 10101175]
  70. Genome Res. 2004 May;14(5):820-8 [PMID: 15078856]
  71. Genome Res. 2004 Mar;14(3):354-66 [PMID: 14993203]
  72. J Mol Evol. 1999 May;48(5):555-64 [PMID: 10198121]
  73. Nature. 1997 Jun 12;387(6634):708-13 [PMID: 9192896]
  74. Heredity (Edinb). 2005 Mar;94(3):280-94 [PMID: 15674378]
  75. Nature. 2008 Aug 7;454(7205):762-5 [PMID: 18594508]
  76. Biol Rev Camb Philos Soc. 2001 Feb;76(1):1-25 [PMID: 11325050]
  77. Mol Biol Evol. 1999 Jul;16(7):885-97 [PMID: 10406107]
  78. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16122-7 [PMID: 21900601]
  79. Genetics. 2010 Feb;184(2):517-27 [PMID: 19948889]
  80. Theory Biosci. 2009 May;128(2):109-20 [PMID: 19225820]
  81. Curr Opin Plant Biol. 2012 Apr;15(2):147-53 [PMID: 22480429]
  82. Am J Bot. 2011 Mar;98(3):404-14 [PMID: 21613134]
  83. Invest Ophthalmol Vis Sci. 2008 Sep;49(9):3812-20 [PMID: 18502992]
  84. BMC Evol Biol. 2009 Aug 08;9:194 [PMID: 19664233]
  85. Yeast. 2007 Nov;24(11):929-42 [PMID: 17621376]
  86. Mol Phylogenet Evol. 2013 Dec;69(3):514-23 [PMID: 23933489]
  87. Brief Funct Genomic Proteomic. 2009 Jul;8(4):266-75 [PMID: 19651705]
  88. Comp Biochem Physiol Part D Genomics Proteomics. 2009 Sep;4(3):147-53 [PMID: 20403766]
  89. PLoS Genet. 2010 May 13;6(5):e1000944 [PMID: 20485561]
  90. Mol Biol Evol. 2003 Sep;20(9):1425-34 [PMID: 12832638]
  91. Annu Rev Plant Biol. 2009;60:433-53 [PMID: 19575588]
  92. Nature. 2004 Oct 21;431(7011):946-57 [PMID: 15496914]
  93. Eur J Neurosci. 2011 Feb;33(4):658-67 [PMID: 21299656]
  94. Dev Biol. 1999 Sep 1;213(1):18-32 [PMID: 10452844]
  95. Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2966-71 [PMID: 22315396]
  96. Genome Biol. 2006;7(5):R43 [PMID: 16723033]
  97. J Neurosci. 2008 Aug 13;28(33):8208-16 [PMID: 18701683]
  98. Evolution. 2008 Sep;62(9):2131-54 [PMID: 18564379]
  99. Proc Biol Sci. 2014 Jan 22;281(1778):20132881 [PMID: 24452024]
  100. Annu Rev Genet. 2000;34:401-437 [PMID: 11092833]
  101. Nature. 2003 Jul 10;424(6945):194-7 [PMID: 12853957]
  102. Genetics. 2008 Mar;178(3):1385-98 [PMID: 18245342]
  103. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14888-93 [PMID: 22927372]
  104. Dev Dyn. 2013 Dec;242(12):1427-41 [PMID: 24038627]
  105. Genome Res. 2000 Sep;10(9):1351-8 [PMID: 10984453]
  106. Mol Syst Biol. 2007;3:129 [PMID: 17667951]
  107. BMC Genomics. 2011 Dec 12;12:599 [PMID: 22151890]
  108. J Exp Zool B Mol Dev Evol. 2010 Mar 15;314(2):135-47 [PMID: 19670462]
  109. Nature. 2003 Jun 19;423(6942):873-6 [PMID: 12815433]
  110. BMC Genomics. 2012 Mar 19;13:96 [PMID: 22424280]
  111. BMC Evol Biol. 2008 Dec 18;8:336 [PMID: 19094205]
  112. Genome Biol. 2007;8(10):R209 [PMID: 17916239]
  113. Genome Res. 2000 Dec;10(12):1890-902 [PMID: 11116085]
  114. Curr Opin Microbiol. 1999 Oct;2(5):548-54 [PMID: 10508730]
  115. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13698-703 [PMID: 22869754]
  116. Mol Cell Biol. 1988 Jun;8(6):2442-8 [PMID: 3043177]
  117. Mol Biol Evol. 2004 Jun;21(6):1146-51 [PMID: 15014147]
  118. Genome Res. 2005 Sep;15(9):1307-14 [PMID: 16109975]
  119. Prog Retin Eye Res. 2010 Nov;29(6):476-86 [PMID: 20488254]
  120. Genome Dyn. 2008;4:25-40 [PMID: 18756075]
  121. Cell. 2000 Jun 9;101(6):577-80 [PMID: 10892643]
  122. Theory Biosci. 2004 Jun;123(1):89-110 [PMID: 18202881]
  123. Dev Genes Evol. 2008 Jan;218(1):1-14 [PMID: 18074148]
  124. Mol Biol Evol. 2006 Sep;23(9):1808-16 [PMID: 16809621]
  125. Mar Biotechnol (NY). 2013 Jun;15(3):275-312 [PMID: 23073608]
  126. Nature. 2006 Mar 16;440(7082):341-5 [PMID: 16541074]
  127. Proc Biol Sci. 1994 May 23;256(1346):119-24 [PMID: 8029240]
  128. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5737-42 [PMID: 19325131]
  129. Mol Biol Evol. 2007 Oct;24(10):2286-97 [PMID: 17675335]
  130. Nat Rev Genet. 2009 Oct;10(10):725-32 [PMID: 19652647]
  131. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  132. Nature. 2009 Dec 10;462(7274):E1; discussion E2-3 [PMID: 20010636]
  133. Nature. 1999 Sep 23;401(6751):341 [PMID: 10517628]
  134. Trends Genet. 2007 Jun;23(6):270-2 [PMID: 17418444]
  135. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1638-43 [PMID: 14757817]
  136. BMC Bioinformatics. 2007 Nov 15;8:444 [PMID: 18005425]
  137. Mol Biol Evol. 2009 Jul;26(7):1523-31 [PMID: 19329651]
  138. Science. 2008 Apr 25;320(5875):486-8 [PMID: 18436778]
  139. Biol Reprod. 2005 Oct;73(4):815-24 [PMID: 15930322]
  140. Trends Genet. 2006 Dec;22(12):642-4 [PMID: 17045359]
  141. BMC Evol Biol. 2012 Oct 18;12:206 [PMID: 23078361]

MeSH Term

Animals
Evolution, Molecular
Fishes
Gene Conversion
Gene Dosage
Gene Duplication
Genome

Word Cloud

Created with Highcharts 10.0.0TS-WGDevolutionaryteleostsgenesduplicationWGDteleostgeneduplicatesWhole-genomefishesduplicatelikelyonepreservingfunctiondosageconsequencesradiationgeneratingcomplexitydiversificationeventsshapedhistorymanylineagesOneimplicatedevolutionfarspecies-richvertebratecladeinitialcontroversynowsolidevidenceeventtookplacecommonancestorextanttermedteleost-specificTSdifferentfatesoutcomenon-functionalizationduelackselectiveconstraintMechanismsactpreservationsubfunctionalizationpartitioningancestralfunctionsneofunctionalizationassigningnovelselectionmaintainbalanceinterconnectedcomponentsSincefrequencymechanismsinfluencedgenes'propertiesover-retainedclasseshighlyexpressedonesinvolvedneuralespeciallyimpactmassivemattercontroversialdebateevidentduplicationscrucialWGDsprovidelargeamountsrawmaterialadaptationinnovationHoweverlessclearwhetherdirectlylinkedsuccessRecentstudiesletusconcludeimportantrecentecologicaladaptationsmarginallyrelatedmightevencontributedhoweverprovidedpotentialcanbecomeeffectivemuchlaterphasesenvironmentalchange

Similar Articles

Cited By