Genetic variation in the effect of monoamines on female mating receptivity and oviposition in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae).

Takashi Yamane
Author Information
  1. Takashi Yamane: , Present address: Noguchi 350-17, Kakogawa, Japan. takya1122@gmail.com.

Abstract

BACKGROUND: Female mate choice after mating is a strong force in sexual selection and could lead to coevolution of mating traits between the sexes. How females of different genotypes respond to substances in the male ejaculate should be mediated by females' mate choices. Monoamines regulate animal physiology and behavior, including the post-mating behavior of females of the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). This study examined differences in females' response to four monoamines (dopamine, octopamine, tyramine, serotonin) between strains from different populations of C. chinensis.
RESULTS: Injection with either octopamine or tyramine, two kinds of monoamines significantly reduced female receptivity in two strains with low remating frequencies. None of the four monoamines reduced female receptivity in one strain with high remating frequencies. However, all monoamines reduced it in another strain with high remating frequencies. Oviposition was activated by tyramine on days 1-5 or by serotonin on days 4 and 5 in the two strains with low remating frequencies, but only on day 1 or day 4 in the strains with high remating frequencies.
CONCLUSION: These differences in female response to monoamines, especially tyramine and serotonin, correspond with results of previous studies. They indicate differences in female response to male substances that reduce receptivity and activate oviposition. These findings suggest relationships between the differences in female response to male substances among populations and mutations in the pathways of monoamine biosynthesis or transmission, which in turn determine female mate choice in response to male substances.

References

  1. Proc Biol Sci. 2001 Feb 22;268(1465):399-405 [PMID: 11270437]
  2. Nature. 1995 Jan 19;373(6511):241-4 [PMID: 7816137]
  3. Philos Trans R Soc Lond B Biol Sci. 2013 Jan 21;368(1613):20120042 [PMID: 23339234]
  4. J Insect Physiol. 2010 Mar;56(3):271-6 [PMID: 19895815]
  5. J Neurosci. 1996 Jun 15;16(12):3900-11 [PMID: 8656284]
  6. Heredity (Edinb). 1948 Dec;2(Pt. 3):349-68 [PMID: 18103134]
  7. Philos Trans R Soc Lond B Biol Sci. 2006 Feb 28;361(1466):301-17 [PMID: 16612889]
  8. Annu Rev Entomol. 2005;50:447-77 [PMID: 15355245]
  9. Annu Rev Entomol. 2011;56:21-40 [PMID: 20868282]
  10. Evolution. 1998 Feb;52(1):1-7 [PMID: 28568154]
  11. J Exp Biol. 2005 Sep;208(Pt 18):3433-40 [PMID: 16155216]
  12. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Feb;189(2):105-14 [PMID: 12607039]
  13. Neuron. 2005 Jul 7;47(1):115-27 [PMID: 15996552]
  14. J Biol Chem. 2005 Apr 15;280(15):14948-55 [PMID: 15691831]
  15. Curr Biol. 2006 Jun 6;16(11):1051-62 [PMID: 16753559]
  16. Proc Biol Sci. 2007 Jan 22;274(1607):247-52 [PMID: 17035168]
  17. J Insect Physiol. 2004 Apr;50(4):351-61 [PMID: 15081828]
  18. Genetics. 2005 Mar;169(3):1425-36 [PMID: 15654117]
  19. Dev Neurobiol. 2007 May;67(6):752-63 [PMID: 17443822]
  20. Gen Comp Endocrinol. 2009 May 15;162(1):18-26 [PMID: 18588893]
  21. J Insect Physiol. 2003 Sep;49(9):823-7 [PMID: 16256684]
  22. Dev Biol. 2003 Dec 1;264(1):38-49 [PMID: 14623230]
  23. Proc Biol Sci. 2003 Mar 22;270(1515):653-64 [PMID: 12769467]
  24. J Evol Biol. 2003 Jan;16(1):1-6 [PMID: 14635875]
  25. J Insect Physiol. 2008 Aug;54(8):1306-13 [PMID: 18675822]
  26. Naturwissenschaften. 2011 Nov;98(11):989-93 [PMID: 21947195]
  27. Neuroscience. 2009 Feb 18;158(4):1292-300 [PMID: 19041376]
  28. Evolution. 2001 Nov 11;55(11):2257-62 [PMID: 11794785]
  29. Insect Mol Biol. 2011 Oct;20(5):619-35 [PMID: 21699597]
  30. Annu Rev Entomol. 2003;48:163-84 [PMID: 12208817]
  31. Biol Rev Camb Philos Soc. 2012 Feb;87(1):1-33 [PMID: 21545390]
  32. J Insect Physiol. 2007 Dec;53(12):1242-9 [PMID: 17681526]
  33. Trends Ecol Evol. 1995 Dec;10(12):493-6 [PMID: 21237123]
  34. Proc Biol Sci. 2001 Mar 7;268(1466):531-9 [PMID: 11296866]
  35. Evolution. 2002 Jan;56(1):111-20 [PMID: 11913656]

MeSH Term

Animals
Biogenic Monoamines
Coleoptera
Female
Genetic Variation
Male
Oviposition
Reproduction
Semen
Serotonin
Sexual Behavior, Animal

Chemicals

Biogenic Monoamines
Serotonin

Word Cloud

Created with Highcharts 10.0.0femalemonoaminesresponserematingfrequenciessubstancesmaledifferencestyraminestrainsreceptivitymatematingchinensisserotonintworeducedhighchoicefemalesdifferentfemales'behavioradzukibeanbeetleCallosobruchusColeoptera:Bruchidaefouroctopaminepopulationslowstraindays4dayovipositionBACKGROUND:FemalestrongforcesexualselectionleadcoevolutiontraitssexesgenotypesrespondejaculatemediatedchoicesMonoaminesregulateanimalphysiologyincludingpost-matingstudyexamineddopamineCRESULTS:InjectioneitherkindssignificantlyNoneoneHoweveranotherOvipositionactivated1-551CONCLUSION:especiallycorrespondresultspreviousstudiesindicatereduceactivatefindingssuggestrelationshipsamongmutationspathwaysmonoaminebiosynthesistransmissionturndetermineGeneticvariationeffect

Similar Articles

Cited By