Prediction of hepatitis C virus interferon/ribavirin therapy outcome based on viral nucleotide attributes using machine learning algorithms.

Amir Hossein KayvanJoo, Mansour Ebrahimi, Gholamreza Haqshenas
Author Information
  1. Mansour Ebrahimi: Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran. Mansour@future.org.

Abstract

BACKGROUND: Hepatitis C virus (HCV) causes chronic hepatitis C in 2-3% of world population and remains one of the health threatening human viruses, worldwide. In the absence of an effective vaccine, therapeutic approach is the only option to combat hepatitis C. Interferon-alpha (IFN-alpha) and ribavirin (RBV) combination alone or in combination with recently introduced new direct-acting antivirals (DAA) is used to treat patients infected with HCV. The present study utilized feature selection methods (Gini Index, Chi Squared and machine learning algorithms) and other bioinformatics tools to identify genetic determinants of therapy outcome within the entire HCV nucleotide sequence.
RESULTS: Using combination of several algorithms, the present study performed a comprehensive bioinformatics analysis and identified several nucleotide attributes within the full-length nucleotide sequences of HCV subtypes 1a and 1b that correlated with treatment outcome. Feature selection algorithms identified several nucleotide features (e.g. count of hydrogen and CG). Combination of algorithms utilized the selected nucleotide attributes and predicted HCV subtypes 1a and 1b therapy responders from non-responders with an accuracy of 75.00% and 85.00%, respectively. In addition, therapy responders and relapsers were categorized with an accuracy of 82.50% and 84.17%, respectively. Based on the identified attributes, decision trees were induced to differentiate different therapy response groups.
CONCLUSIONS: The present study identified new genetic markers that potentially impact the outcome of hepatitis C treatment. In addition, the results suggest new viral genomic attributes that might influence the outcome of IFN-mediated immune response to HCV infection.

References

  1. PLoS One. 2011;6(9):e24514 [PMID: 21935415]
  2. Comb Chem High Throughput Screen. 2012 Jul;15(6):492-502 [PMID: 22263859]
  3. J Virol. 2007 Aug;81(15):8211-24 [PMID: 17522222]
  4. Breast Cancer Res Treat. 2011 Jul;128(2):315-26 [PMID: 20697807]
  5. Semin Liver Dis. 1999;19 Suppl 1:57-65 [PMID: 10349693]
  6. PLoS One. 2013 Dec 04;8(12):e80838 [PMID: 24324634]
  7. Science. 2000 Dec 8;290(5498):1972-4 [PMID: 11110665]
  8. Biochem Soc Trans. 2007 Dec;35(Pt 6):1569-73 [PMID: 18031268]
  9. Nature. 2005 Aug 18;436(7053):967-72 [PMID: 16107837]
  10. Intervirology. 2009;52(6):301-9 [PMID: 19729953]
  11. J Virol. 2008 Jul;82(13):6644-53 [PMID: 18448540]
  12. PLoS One. 2012;7(9):e44164 [PMID: 22957050]
  13. Nat Genet. 2009 Oct;41(10):1100-4 [PMID: 19749758]
  14. Pharmacol Ther. 1998 May;78(2):55-113 [PMID: 9623881]
  15. PLoS One. 2012;7(7):e40017 [PMID: 22829872]
  16. Nature. 2009 Sep 17;461(7262):399-401 [PMID: 19684573]
  17. Liver Int. 2003 Dec;23(6):426-33 [PMID: 14986817]
  18. PLoS One. 2011;6(8):e23146 [PMID: 21853079]
  19. Science. 1999 Jul 2;285(5424):110-3 [PMID: 10390360]
  20. Retrovirology. 2012 Nov 06;9:92 [PMID: 23131071]
  21. Accid Anal Prev. 2012 Mar;45:478-86 [PMID: 22269532]
  22. J Gastroenterol Hepatol. 2005 Sep;20(9):1401-9 [PMID: 16105128]
  23. J Biol Chem. 2001 Dec 7;276(49):46094-8 [PMID: 11602568]
  24. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6281-4 [PMID: 22255774]
  25. Saline Syst. 2011 May 18;7(1):1 [PMID: 21592393]
  26. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6208-11 [PMID: 22255757]
  27. J Virol. 2011 Apr;85(7):3649-63 [PMID: 21248044]
  28. N Engl J Med. 2011 Jun 23;364(25):2417-28 [PMID: 21696308]
  29. Springerplus. 2013 May 24;2(1):238 [PMID: 23888262]
  30. J Virol. 2011 Mar;85(5):2224-34 [PMID: 21123377]
  31. Int J Mol Sci. 2011;12(12):8415-30 [PMID: 22272081]
  32. IEEE Trans Med Imaging. 2012 May;31(5):1034-42 [PMID: 22271831]
  33. Curr Med Chem. 2011;18(36):5687-93 [PMID: 22172073]
  34. J Res Med Sci. 2010 Nov;15(6):299-309 [PMID: 21526102]
  35. J Viral Hepat. 2003 Mar;10(2):87-94 [PMID: 12614464]
  36. Gut. 2004 Sep;53(9):1345-51 [PMID: 15306598]
  37. Bioinform Biol Insights. 2011 Apr 17;5:59-82 [PMID: 21573033]
  38. Clin Gastroenterol Hepatol. 2013 Jan;11(1):81-87.e4; quiz e5 [PMID: 23064222]
  39. N Engl J Med. 2011 Mar 31;364(13):1207-17 [PMID: 21449784]
  40. Lancet Infect Dis. 2005 Sep;5(9):558-67 [PMID: 16122679]
  41. PLoS One. 2008 May 07;3(5):e2123 [PMID: 18463735]
  42. Science. 1989 Apr 21;244(4902):359-62 [PMID: 2523562]
  43. Intervirology. 2005;48(6):372-80 [PMID: 16024941]

MeSH Term

Adenine Nucleotides
Algorithms
Antiviral Agents
Artificial Intelligence
Chi-Square Distribution
Computational Biology
Cytosine Nucleotides
DNA, Viral
Decision Support Techniques
Decision Trees
Drug Therapy, Combination
Genotype
Guanine Nucleotides
Hepacivirus
Hepatitis C, Chronic
Humans
Hydrogen
Interferons
Nucleotides
Oxygen
Patient Selection
Ribavirin
Treatment Outcome
Uracil Nucleotides

Chemicals

Adenine Nucleotides
Antiviral Agents
Cytosine Nucleotides
DNA, Viral
Guanine Nucleotides
Nucleotides
Uracil Nucleotides
Ribavirin
Hydrogen
Interferons
Oxygen

Word Cloud

Created with Highcharts 10.0.0HCVnucleotideCalgorithmstherapyoutcomeattributeshepatitisidentifiedcombinationnewpresentstudyseveralvirusutilizedselectionmachinelearningbioinformaticsgeneticwithinsubtypes1a1btreatmentrespondersaccuracy00%respectivelyadditionresponseviralBACKGROUND:Hepatitiscauseschronic2-3%worldpopulationremainsonehealththreateninghumanvirusesworldwideabsenceeffectivevaccinetherapeuticapproachoptioncombatInterferon-alphaIFN-alpharibavirinRBValonerecentlyintroduceddirect-actingantiviralsDAAusedtreatpatientsinfectedfeaturemethodsGiniIndexChiSquaredtoolsidentifydeterminantsentiresequenceRESULTS:Usingperformedcomprehensiveanalysisfull-lengthsequencescorrelatedFeaturefeaturesegcounthydrogenCGCombinationselectedpredictednon-responders7585relapserscategorized8250%8417%BaseddecisiontreesinduceddifferentiatedifferentgroupsCONCLUSIONS:markerspotentiallyimpactresultssuggestgenomicmightinfluenceIFN-mediatedimmuneinfectionPredictioninterferon/ribavirinbasedusing

Similar Articles

Cited By