pH-dependent deformations of the energy landscape of avidin-like proteins investigated by single molecule force spectroscopy.

Melanie Köhler, Andreas Karner, Michael Leitner, Vesa P Hytönen, Markku Kulomaa, Peter Hinterdorfer, Andreas Ebner
Author Information
  1. Melanie Köhler: Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria. melanie.koehler@jku.at.
  2. Andreas Karner: Center for Advanced Bioanalysis, Gruberstrasse 40, 4020 Linz, Austria. andreas.karner@cbl.at.
  3. Michael Leitner: Center for Advanced Bioanalysis, Gruberstrasse 40, 4020 Linz, Austria. michael.leitner@cbl.at.
  4. Vesa P Hytönen: Institute of Biomedical Technology, University of Tampere, FI-33014 Tampere, Finland. vesa.hytonen@uta.fi.
  5. Markku Kulomaa: Institute of Biomedical Technology, University of Tampere, FI-33014 Tampere, Finland. markku.kulomaa@uta.fi.
  6. Peter Hinterdorfer: Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria. peter.hinterdorfer@jku.at.
  7. Andreas Ebner: Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria. andreas.ebner@jku.at.

Abstract

Avidin and avidin-like proteins are widely used in numerous techniques since the avidin-biotin interaction is known to be very robust and reliable. Within this study, we investigated this bond at the molecular level under harsh conditions ranging from very low to very high pH values. We compared avidin with streptavidin and a recently developed avidin-based mutant, chimeric avidin. To gain insights of the energy landscape of these interactions we used a single molecule approach and performed the Single Molecule Force Spectroscopy atomic force microscopy technique. There, the ligand (biotin) is covalently coupled to a sharp AFM tip via a distensible hetero-bi-functional crosslinker, whereas the receptor of interest is immobilized on the probe surface. Receptor-ligand complexes are formed and ruptured by repeatedly approaching and withdrawing the tip from the surface. Varying both pulling velocity and pH value, we could determine changes of the energy landscape of the complexes. Our results clearly demonstrate that avidin, streptavidin and chimeric avidin are stable over a wide pH range although we could identify differences at the outer pH range. Taking this into account, they can be used in a broad range of applications, like surface sensors at extreme pH values.

References

  1. Biophys J. 2008 Oct;95(8):3964-76 [PMID: 18621812]
  2. J Mol Recognit. 2007 Nov-Dec;20(6):495-501 [PMID: 17902095]
  3. Phys Chem Chem Phys. 2010 Oct 21;12(39):12578-83 [PMID: 20725689]
  4. J Biol Chem. 2005 Mar 18;280(11):10228-33 [PMID: 15649900]
  5. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13573-8 [PMID: 22869712]
  6. Biol Chem. 2004 Oct;385(10):955-60 [PMID: 15551870]
  7. J Chem Phys. 2006 Sep 14;125(10):104905 [PMID: 16999548]
  8. J Mol Recognit. 2011 May-Jun;24(3):490-502 [PMID: 21504028]
  9. J Biol Chem. 2012 Jan 2;287(1):105-113 [PMID: 22033932]
  10. Methods Enzymol. 1990;184:5-13 [PMID: 2201884]
  11. Acta Biochim Pol. 2006;53(1):93-100 [PMID: 16410837]
  12. Biotechnol Bioeng. 2011 Mar;108(3):481-90 [PMID: 20939005]
  13. Proc Soc Exp Biol Med. 1964 Nov;117:341-4 [PMID: 14233437]
  14. Biophys J. 2005 Dec;89(6):4374-81 [PMID: 16169976]
  15. Nat Methods. 2010 May;7(5):391-3 [PMID: 20383133]
  16. Biochem J. 1963 Dec;89:609-20 [PMID: 14101982]
  17. Ultramicroscopy. 2000 Feb;82(1-4):85-95 [PMID: 10741656]
  18. Trends Biotechnol. 2007 Jun;25(6):269-77 [PMID: 17433846]
  19. Ultramicroscopy. 2007 Oct;107(10-11):922-7 [PMID: 17560033]
  20. Methods. 2013 Apr 1;60(2):142-50 [PMID: 23531626]
  21. Faraday Discuss. 1998;(111):1-16 [PMID: 10822596]
  22. Science. 1994 Oct 14;266(5183):257-9 [PMID: 7939660]
  23. Immunol Lett. 2006 Feb 28;103(1):27-32 [PMID: 16325268]
  24. Biochemistry. 2000 Aug 22;39(33):10219-23 [PMID: 10956011]
  25. Nat Methods. 2008 Jun;5(6):491-505 [PMID: 18511917]
  26. Biophys J. 2000 Sep;79(3):1206-12 [PMID: 10968985]
  27. J Mol Recognit. 2014 Feb;27(2):92-7 [PMID: 24436126]
  28. Chem Biol. 2006 Oct;13(10):1029-39 [PMID: 17052607]
  29. Science. 1978 May 12;200(4342):618-27 [PMID: 347575]
  30. Biophys J. 1995 Nov;69(5):2125-30 [PMID: 8580356]
  31. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076-80 [PMID: 8506353]
  32. Nat Struct Biol. 2002 Aug;9(8):582-5 [PMID: 12134141]
  33. Biomol Eng. 1999 Dec 31;16(1-4):45-55 [PMID: 10796984]
  34. Science. 1994 Apr 15;264(5157):415-7 [PMID: 8153628]
  35. Nature. 1999 Jan 7;397(6714):50-3 [PMID: 9892352]
  36. Biophys J. 1997 Apr;72(4):1568-81 [PMID: 9083662]

MeSH Term

Avidin
Biotin
Hydrogen-Ion Concentration
Immobilized Proteins
Kinetics
Microscopy, Atomic Force
Protein Binding
Streptavidin
Thermodynamics

Chemicals

Immobilized Proteins
Avidin
Biotin
Streptavidin

Word Cloud

Created with Highcharts 10.0.0pHavidinusedenergylandscapesurfacerangeavidin-likeproteinsinvestigatedvaluesstreptavidinchimericsinglemoleculeforcetipcomplexesAvidinwidelynumeroustechniquessinceavidin-biotininteractionknownrobustreliableWithinstudybondmolecularlevelharshconditionsranginglowhighcomparedrecentlydevelopedavidin-basedmutantgaininsightsinteractionsapproachperformedSingleMoleculeForceSpectroscopyatomicmicroscopytechniqueligandbiotincovalentlycoupledsharpAFMviadistensiblehetero-bi-functionalcrosslinkerwhereasreceptorinterestimmobilizedprobeReceptor-ligandformedrupturedrepeatedlyapproachingwithdrawingVaryingpullingvelocityvaluedeterminechangesresultsclearlydemonstratestablewidealthoughidentifydifferencesouterTakingaccountcanbroadapplicationslikesensorsextremepH-dependentdeformationsspectroscopy

Similar Articles

Cited By