Examination of the Anaerobic Growth of Campylobacter concisus Strains.

Hoyul Lee, Rena Ma, Michael C Grimm, Stephen M Riordan, Ruiting Lan, Ling Zhong, Mark Raftery, Li Zhang
Author Information
  1. Hoyul Lee: The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
  2. Rena Ma: The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
  3. Michael C Grimm: St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
  4. Stephen M Riordan: Gastrointestinal and Liver Unit, Prince of Wales Hospital and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
  5. Ruiting Lan: The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
  6. Ling Zhong: Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia.
  7. Mark Raftery: Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia.
  8. Li Zhang: The School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW 2052, Australia. ORCID

Abstract

Campylobacter concisus is an oral bacterium that is associated with intestinal diseases. C. concisus was previously described as a bacterium that requires H2-enriched microaerobic conditions for growth. The level of H2 in the oral cavity is extremely low, suggesting that C. concisus is unlikely to have a microaerobic growth there. In this study, the anaerobic growth of C. concisus was investigated. The growth of fifty-seven oral C. concisus strains and six enteric C. concisus strains under various atmospheric conditions including anaerobic conditions with and without H2 was examined. The atmospheric conditions were generated using commercially available gas-generation systems. C. concisus putative virulence proteins were identified using mass spectrometry analysis. Under anaerobic conditions, 92% of the oral C. concisus strains (52/57) and all six enteric strains grew without the presence of H2 and the presence of H2 greatly increased C. concisus growth. An oral C. concisus strain was found to express a number of putative virulence proteins and the expression levels of these proteins were not affected by H2. The levels of H2 appeared to affect the optimal growth of C. concisus. This study provides useful information in understanding the natural colonization site and pathogenicity of C. concisus.

References

  1. BMC Microbiol. 2011 Mar 15;11:53 [PMID: 21406111]
  2. Clin Microbiol Infect. 2013 May;19(5):445-50 [PMID: 22512739]
  3. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4 [PMID: 17485472]
  4. Am J Clin Nutr. 1978 Oct;31(10 Suppl):S169-S174 [PMID: 707369]
  5. Ann Periodontol. 2002 Dec;7(1):43-53 [PMID: 16013216]
  6. Science. 1992 Nov 6;258(5084):1004-7 [PMID: 1439793]
  7. PLoS One. 2012;7(8):e42842 [PMID: 22952616]
  8. J Lab Clin Med. 1970 Jun;75(6):937-45 [PMID: 5421079]
  9. Gut. 1991 Dec;32(12):1498-501 [PMID: 1773956]
  10. J Clin Microbiol. 2000 Jan;38(1):286-91 [PMID: 10618103]
  11. Oral Microbiol Immunol. 2000 Apr;15(2):103-11 [PMID: 11155173]
  12. J Med Microbiol. 2004 Jun;53(Pt 6):483-493 [PMID: 15150326]
  13. Int J Med Microbiol. 2002 Mar;291(8):605-14 [PMID: 12008914]
  14. J Clin Microbiol. 2010 Aug;48(8):2965-7 [PMID: 20519479]
  15. Infect Immun. 1995 Sep;63(9):3659-64 [PMID: 7642304]
  16. Nat Clin Pract Gastroenterol Hepatol. 2006 Jul;3(7):390-407 [PMID: 16819502]
  17. Dig Dis Sci. 2003 Jan;48(1):86-92 [PMID: 12645795]
  18. J Clin Microbiol. 2009 Jul;47(7):2360 [PMID: 19574589]
  19. Gut. 1990 Jun;31(6):679-83 [PMID: 2379871]
  20. Gut. 1985 Jan;26(1):69-74 [PMID: 3965369]
  21. PLoS One. 2011;6(6):e21490 [PMID: 21738679]
  22. J Clin Microbiol. 2009 Feb;47(2):453-5 [PMID: 19052183]
  23. Annu Rev Food Sci Technol. 2010;1:363-95 [PMID: 22129341]
  24. Lancet. 1983 May 28;1(8335):1206-9 [PMID: 6134000]
  25. Inflamm Bowel Dis. 2010 Jun;16(6):1008-16 [PMID: 19885905]
  26. Gut. 1987 Jun;28(6):721-5 [PMID: 3623219]
  27. J Clin Invest. 1992 Apr;89(4):1304-11 [PMID: 1556190]
  28. Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):1852-7 [PMID: 14769936]
  29. Gut. 2006 Mar;55(3):297-303 [PMID: 16474100]
  30. PLoS One. 2012;7(5):e38217 [PMID: 22666490]
  31. FEMS Immunol Med Microbiol. 2008 Nov;54(2):224-35 [PMID: 18754784]
  32. Anal Biochem. 1998 Oct 1;263(1):93-101 [PMID: 9750149]
  33. PLoS One. 2011;6(9):e25417 [PMID: 21966525]
  34. BMC Microbiol. 2008 May 20;8:79 [PMID: 18492229]
  35. N Engl J Med. 1969 Jul 17;281(3):122-7 [PMID: 5790483]

Word Cloud

Created with Highcharts 10.0.0concisusCgrowthH2oralconditionsstrainsanaerobicproteinsCampylobacterbacteriummicroaerobicstudysixentericatmosphericwithoutusingputativevirulencepresencelevelsassociatedintestinaldiseasespreviouslydescribedrequiresH2-enrichedlevelcavityextremelylowsuggestingunlikelyinvestigatedfifty-sevenvariousincludingexaminedgeneratedcommerciallyavailablegas-generationsystemsidentifiedmassspectrometryanalysis92%52/57grewgreatlyincreasedstrainfoundexpressnumberexpressionaffectedappearedaffectoptimalprovidesusefulinformationunderstandingnaturalcolonizationsitepathogenicityExaminationAnaerobicGrowthStrains

Similar Articles

Cited By