Effect of spinal manipulation thrust duration on trunk mechanical activation thresholds of nociceptive-specific lateral thalamic neurons.

William R Reed, Randall Sozio, Joel G Pickar, Stephen M Onifer
Author Information
  1. William R Reed: Associate Professor, Palmer Center for Chiropractic Research, Davenport, IA. Electronic address: william.reed@palmer.edu.
  2. Randall Sozio: Research Associate, Palmer Center for Chiropractic Research, Davenport, IA.
  3. Joel G Pickar: Professor Emeritus, Palmer Center for Chiropractic Research, Davenport, IA.
  4. Stephen M Onifer: Associate Professor, Palmer Center for Chiropractic Research, Davenport, IA.

Abstract

OBJECTIVE: The objective of this preliminary study was to determine if high-velocity, low-amplitude spinal manipulation (HVLA-SM) thrust duration alters mechanical trunk activation thresholds of nociceptive-specific (NS) lateral thalamic neurons.
METHODS: Extracellular recordings were obtained from 18 NS neurons located in 2 lateral thalamic nuclei (ventrolateral [n = 12] and posterior [n = 6]) in normal anesthetized Wistar rats. Response thresholds to electronic von Frey anesthesiometer (rigid tip) mechanical trunk stimuli applied in 3 lumbar directions (dorsal-ventral, 45° caudal, and 45° cranial) were determined before and immediately after the delivery of 3 HVLA-SM thrust durations (time control 0, 100, and 400 milliseconds). Mean changes in mechanical trunk activation thresholds were compared using a mixed model analysis of variance.
RESULTS: High-velocity, low-amplitude spinal manipulation duration did not significantly alter NS lateral thalamic neurons' mechanical trunk responses to any of the 3 directions tested with the anesthesiometer.
CONCLUSIONS: This study is the first to examine the effect of HVLA-SM thrust duration on NS lateral thalamic mechanical response thresholds. High-velocity, low-amplitude spinal manipulation thrust duration did not affect mechanical trunk thresholds.

Keywords

References

  1. J Orthop Sports Phys Ther. 2007 Jun;37(6):325-9 [PMID: 17612359]
  2. J Manipulative Physiol Ther. 2014 Jun;37(5):287-93 [PMID: 24928637]
  3. J Orthop Sports Phys Ther. 2013 May;43(5):340-8 [PMID: 23485766]
  4. J Manipulative Physiol Ther. 2006 Jan;29(1):5-13 [PMID: 16396724]
  5. J Manipulative Physiol Ther. 2004 Jun;27(5):314-26 [PMID: 15195039]
  6. Man Ther. 2012 Aug;17(4):292-7 [PMID: 22421187]
  7. J Neurophysiol. 1999 May;81(5):2243-52 [PMID: 10322063]
  8. Man Ther. 2012 Dec;17(6):577-83 [PMID: 22809745]
  9. Exp Neurol. 2006 Jul;200(1):227-39 [PMID: 16624305]
  10. J Pain. 2014 Apr;15(4):422-34 [PMID: 24412800]
  11. Eur J Pain. 2001;5(1):81-7 [PMID: 11394925]
  12. J Electromyogr Kinesiol. 2012 Oct;22(5):632-42 [PMID: 22513367]
  13. Neuropharmacology. 2005 Mar;48(4):607-16 [PMID: 15755488]
  14. Man Ther. 2001 Nov;6(4):205-12 [PMID: 11673930]
  15. J Neurophysiol. 2003 Jan;89(1):2-11 [PMID: 12522154]
  16. J Manipulative Physiol Ther. 2013 Jul-Aug;36(6):333-41 [PMID: 23830709]
  17. Malays J Med Sci. 2006 Jul;13(2):11-8 [PMID: 22589599]
  18. J Manipulative Physiol Ther. 2011 May;34(4):211-20 [PMID: 21621722]
  19. J Manipulative Physiol Ther. 2009 Feb;32(2):101-6 [PMID: 19243721]
  20. Magn Reson Imaging. 2003 Jun;21(5):489-96 [PMID: 12878258]
  21. Anat Embryol (Berl). 1990;181(6):577-84 [PMID: 2396757]
  22. Brain Res Bull. 1992 Nov;29(5):617-34 [PMID: 1422859]
  23. Prog Neurobiol. 2009 Dec;89(4):383-9 [PMID: 19819292]
  24. J Manipulative Physiol Ther. 2013 Feb;36(2):78-83 [PMID: 23499142]
  25. J Neurophysiol. 1963 Sep;26:775-806 [PMID: 14065328]
  26. Mol Pain. 2006 Aug 17;2:27 [PMID: 16916452]
  27. J Manipulative Physiol Ther. 2013 Nov-Dec;36(9):585-94 [PMID: 24161386]
  28. J Manipulative Physiol Ther. 2008 Nov-Dec;31(9):675-81 [PMID: 19028251]
  29. J Manipulative Physiol Ther. 2012 Jul;35(6):437-45 [PMID: 22902139]
  30. J Can Chiropr Assoc. 2014 Jun;58(2):141-8 [PMID: 24932018]
  31. Exp Brain Res. 1987;66(2):421-31 [PMID: 3595785]
  32. Exp Brain Res. 1987;66(3):489-99 [PMID: 3475211]
  33. J Bodyw Mov Ther. 2010 Jul;14(3):280-6 [PMID: 20538226]
  34. J Manipulative Physiol Ther. 2014 Jun;37(5):277-86 [PMID: 24928636]
  35. Spine J. 2001 Mar-Apr;1(2):121-30 [PMID: 14588392]
  36. J Manipulative Physiol Ther. 2014 Feb;37(2):68-78 [PMID: 24387888]
  37. J Manipulative Physiol Ther. 2000 Feb;23(2):134-8 [PMID: 10714544]
  38. J Neurosci. 2006 Apr 19;26(16):4406-14 [PMID: 16624960]
  39. Spine (Phila Pa 1976). 1993 Jul;18(9):1206-12 [PMID: 8362328]
  40. Spine J. 2008 Jan-Feb;8(1):213-25 [PMID: 18164469]
  41. Evid Based Complement Alternat Med. 2013;2013:492039 [PMID: 23401713]
  42. J Physiol. 2010 Apr 1;588(Pt 7):1073-83 [PMID: 20142271]
  43. Exp Neurol. 2008 Apr;210(2):375-87 [PMID: 18096159]
  44. J Pain. 2006 Aug;7(8):602-7 [PMID: 16885017]
  45. Prog Neurobiol. 2008 Aug;85(4):355-75 [PMID: 18582529]
  46. Man Ther. 2009 Oct;14(5):531-8 [PMID: 19027342]
  47. J Comp Neurol. 2000 Aug 14;424(1):111-41 [PMID: 10888743]
  48. Pain. 2003 Nov;106(1-2):159-68 [PMID: 14581123]
  49. J Manipulative Physiol Ther. 2013 Nov-Dec;36(9):557-63 [PMID: 24161387]
  50. Brain Res. 2009 May 1;1268:154-161 [PMID: 19285053]
  51. J Neurophysiol. 1983 Mar;49(3):567-81 [PMID: 6300350]
  52. J Manipulative Physiol Ther. 2013 Feb;36(2):68-77 [PMID: 23499141]
  53. J Neurosci. 2009 Nov 11;29(45):14236-46 [PMID: 19906971]
  54. J Manipulative Physiol Ther. 2008 Jun;31(5):332-7 [PMID: 18558274]
  55. J Electromyogr Kinesiol. 2012 Oct;22(5):752-67 [PMID: 22296867]
  56. J Neurophysiol. 2009 Aug;102(2):1062-74 [PMID: 19553492]
  57. Ann Intern Med. 2012 Jan 3;156(1 Pt 1):1-10 [PMID: 22213489]
  58. Clin Biomech (Bristol, Avon). 2006 Mar;21(3):254-62 [PMID: 16378668]
  59. J Comp Neurol. 2002 Jun 17;448(1):53-101 [PMID: 12012375]
  60. Pain. 2011 Nov;152(11):2505-2513 [PMID: 21906880]
  61. J Electromyogr Kinesiol. 2012 Oct;22(5):670-91 [PMID: 22534288]
  62. Exp Brain Res. 1987;68(2):311-8 [PMID: 3691704]

Grants

  1. K01AT005935/NCCIH NIH HHS
  2. P30 GM103507/NIGMS NIH HHS
  3. C06 RR015433/NCRR NIH HHS
  4. 8P30GM103507/NIGMS NIH HHS
  5. C06 RR15433/NCRR NIH HHS
  6. K01 AT005935/NCCIH NIH HHS

MeSH Term

Animals
Lateral Thalamic Nuclei
Male
Manipulation, Spinal
Nociceptors
Rats
Rats, Wistar

Word Cloud

Created with Highcharts 10.0.0mechanicaltrunkthresholdsthrustdurationlateralthalamicspinalmanipulationNSlow-amplitudeHVLA-SMactivationneurons3studynociceptive-specific[n=anesthesiometerdirections45°High-velocityOBJECTIVE:objectivepreliminarydeterminehigh-velocityaltersMETHODS:Extracellularrecordingsobtained18located2nucleiventrolateral12]posterior6]normalanesthetizedWistarratsResponseelectronicvonFreyrigidtipstimuliappliedlumbardorsal-ventralcaudalcranialdeterminedimmediatelydeliverydurationstimecontrol0100400millisecondsMeanchangescomparedusingmixedmodelanalysisvarianceRESULTS:significantlyalterneurons'responsestestedCONCLUSIONS:firstexamineeffectresponseaffectEffectChiropracticLumbarVertebraeManipulationNociceptiveNeuronSpinalThalamus

Similar Articles

Cited By (6)