Effects of cold exposure on behavioral and electrophysiological parameters related with hippocampal function in rats.

Hajar Elmarzouki, Youssef Aboussaleh, Soner Bitiktas, Cem Suer, A Seda Artis, Nazan Dolu, Ahmed Ahami
Author Information
  1. Hajar Elmarzouki: Laboratory of Nutrition and Health, Department of Biology, Faculty of Science, Ibn Tofail University Kenitra, Morocco.
  2. Youssef Aboussaleh: Laboratory of Nutrition and Health, Department of Biology, Faculty of Science, Ibn Tofail University Kenitra, Morocco.
  3. Soner Bitiktas: Department of Physiology, Erciyes University School of Medicine Kayseri, Turkey.
  4. Cem Suer: Department of Physiology, Erciyes University School of Medicine Kayseri, Turkey.
  5. A Seda Artis: Department of Physiology, Medeniyet University School of Medicine İstanbul, Turkey.
  6. Nazan Dolu: Department of Physiology, Erciyes University School of Medicine Kayseri, Turkey.
  7. Ahmed Ahami: Laboratory of Nutrition and Health, Department of Biology, Faculty of Science, Ibn Tofail University Kenitra, Morocco.

Abstract

AIM: Behavioral and mental changes may occur in people exposed to cold stress by decreasing their work efficiency and their mental capacity while increasing the number of accidents on the job site. The goal of this study was to explore the effect of cold stress in spatial learning performance excitability and LTP.
MATERIALS AND METHODS: Three to four month old rats were randomly divided into four groups to form a control group and a cold stress group for each sex. The groups of cold stressed animals were placed in a cold room ambient temperature of 4°C for 2 h day. Adrenal glands and body weight (g) were recorded in control and stressed rats during the cold exposure. Spatial learning (acquisition phase) and memory (probe trial) were tested in the Morris water maze (MWM) immediately after daily exposure. Latency to locate the hidden platform, distance moved (DM), mean distance to platform, swim speed (SS) and time spent in the platform quadrant were compared between genders and treatments. Field potential recordings were made, under urethane anesthesia, from the dentate gyrus (DG) granule-cell layer, with stimulation of the medial perforant pathway 2 h after the probe trial. This study examined spatial memory as measured by MWM performance and hippocampal long-term potentiation (LTP) in the DG after exposure to cold in a repeated stress condition for 2 h/day for 5 days.
RESULTS: The cold-exposed female rats needed less time to find the hidden platform on day 1 (43.0 ± 13.9 s vs. 63.2 ± 13.2 s), day 2 (18.2 ± 8.4 s vs. 40.9 ± 12.2 s) and on day 4 (8.0 ± 2.1 s vs. 17.2 ± 7.0 s) while cold-exposed male rats showed a decreased escape latency (EL) on day 1 only (37.3 ± 12.5 s vs. 75.4 ± 13.1 s). Cold-exposed male rats spent less time in the target quadrant (30.08 ± 6.11%) than the control male rats (37.33 ± 8.89%). Two hour cold exposure decreased population spike (PS) potentiation during both induction (218.3 ± 21.6 vs. 304.5 ± 18.8%) and maintenance intervals (193.9 ± 24.5 vs. 276.6 ± 25.4%) in male rats. Meanwhile cold exposure did not affect the body weight (C: 221 ± 2.5 vs. S: 222 ± 1.7) but it impacts the adrenal gland relative weight (S: 27.1 ± 1.8 mg vs. C: 26.2 ± 1.4 mg).
CONCLUSION: Overall, the results show that repeated cold exposure can selectively improve spatial learning in adult female rats, but impaired retention memory for platform location in male rats. It is possible that impaired LTP underlies some of the impaired retention memory caused by cold exposure in the male rats.

Keywords

References

  1. Brain Res. 1994 Oct 24;661(1-2):25-34 [PMID: 7834376]
  2. Eur J Neurosci. 1997 Apr;9(4):637-42 [PMID: 9153570]
  3. J Neurosci. 1987 Sep;7(9):2837-43 [PMID: 3625275]
  4. Brain Res. 1992 Mar 6;574(1-2):125-30 [PMID: 1638389]
  5. Pharmacol Ther. 1995;68(2):297-42 [PMID: 8719972]
  6. Exp Neurol. 2006 Oct;201(2):452-60 [PMID: 16839549]
  7. Life Sci. 2004 May 21;75(1):119-27 [PMID: 15102526]
  8. Hippocampus. 1999;9(5):542-52 [PMID: 10560925]
  9. Int J Neurosci. 1989 Sep;48(1-2):29-69 [PMID: 2684886]
  10. Scand J Psychol. 2005 Jul;46(3):239-46 [PMID: 15842414]
  11. Learn Mem. 2003 Nov-Dec;10(6):520-4 [PMID: 14657263]
  12. Neurosci Biobehav Rev. 2005 Jan;28(8):811-25 [PMID: 15642623]
  13. Adv Pharmacol. 1998;42:556-60 [PMID: 9327962]
  14. J Neurosci. 1994 Jul;14(7):4458-66 [PMID: 8027788]
  15. Brain Res. 1998 Apr 13;789(2):245-55 [PMID: 9573376]
  16. Neuropharmacology. 1973 Oct;12(10):933-8 [PMID: 4750561]
  17. Physiol Behav. 2000 Aug-Sep;70(3-4):311-7 [PMID: 11006429]
  18. Behav Neural Biol. 1991 Jan;55(1):19-30 [PMID: 1996945]
  19. Neuroscience. 2002;113(2):401-10 [PMID: 12127097]
  20. J Neuroendocrinol. 2012 Mar;24(3):422-33 [PMID: 22070634]
  21. Eur J Neurosci. 2002 Aug;16(3):445-53 [PMID: 12193187]
  22. Neuroscience. 1988 Dec;27(3):897-904 [PMID: 3252176]
  23. Biol Psychiatry. 2005 Apr 15;57(8):856-64 [PMID: 15820706]
  24. Nature. 1993 Jan 7;361(6407):31-9 [PMID: 8421494]
  25. Physiol Behav. 1991 Nov;50(5):1013-8 [PMID: 1805262]
  26. Behav Neurosci. 1995 Oct;109(5):859-73 [PMID: 8554711]
  27. Nature. 1982 Jun 24;297(5868):681-3 [PMID: 7088155]
  28. Trends Cogn Sci. 2013 Feb;17(2):60-8 [PMID: 23290054]
  29. Pharmacol Biochem Behav. 2004 Jul;78(3):569-79 [PMID: 15251266]
  30. Behav Neural Biol. 1984 Nov;42(2):191-6 [PMID: 6525145]
  31. Exp Brain Res. 2009 Aug;197(2):135-42 [PMID: 19554317]
  32. Physiol Rev. 2009 Apr;89(2):535-606 [PMID: 19342614]
  33. Prog Neurobiol. 2003 Feb;69(3):143-79 [PMID: 12758108]
  34. Physiol Behav. 2007 Feb 28;90(2-3):301-7 [PMID: 17078981]
  35. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):27-31 [PMID: 6885583]
  36. Brain Res. 2008 Nov 6;1239:171-80 [PMID: 18789908]
  37. Psychoneuroendocrinology. 1991;16(1-3):155-76 [PMID: 1961837]
  38. J Neurosci. 1991 May;11(5):1478-84 [PMID: 1674004]
  39. Horm Behav. 2000 May;37(3):169-78 [PMID: 10868480]
  40. Brain Res Bull. 2000 Jun;52(3):229-34 [PMID: 10822166]
  41. Brain Res. 2000 Apr 28;863(1-2):151-9 [PMID: 10773203]
  42. Physiol Behav. 2002 Apr 15;75(5):661-73 [PMID: 12020731]
  43. Neuroscience. 2006;137(1):83-92 [PMID: 16289354]
  44. J Comp Physiol Psychol. 1982 Aug;96(4):563-73 [PMID: 7119176]
  45. Proc Biol Sci. 1999 Nov 22;266(1435):2303-8 [PMID: 10629980]

Word Cloud

Created with Highcharts 10.0.0±cold2ratsexposure1svsmalestressdayplatform5LTPmemory84spatiallearningcontrolweightMWMtimepotentiation01396impairedmentalstudyperformancefourgroupsgroupstressedhbodyprobetrialMorriswatermazehiddendistancespentquadrantDGhippocampallong-termrepeatedcold-exposedfemaleless18127decreased373C:S:mgretentionAIM:BehavioralchangesmayoccurpeopleexposeddecreasingworkefficiencycapacityincreasingnumberaccidentsjobsitegoalexploreeffectexcitabilityMATERIALSANDMETHODS:Threemontholdrandomlydividedformsexanimalsplacedroomambienttemperature4°CAdrenalglandsgrecordedSpatialacquisitionphasetestedimmediatelydailyLatencylocatemovedDMmeanswimspeedSScomparedgenderstreatmentsFieldpotentialrecordingsmadeurethaneanesthesiadentategyrusgranule-celllayerstimulationmedialperforantpathwayexaminedmeasuredconditionh/daydaysRESULTS:neededfind43634017showedescapelatencyEL75Cold-exposedtarget300811%3389%TwohourpopulationspikePSinduction218213048%maintenanceintervals19324276254%Meanwhileaffect221222impactsadrenalglandrelative2726CONCLUSION:OverallresultsshowcanselectivelyimproveadultlocationpossibleunderliescausedEffectsbehavioralelectrophysiologicalparametersrelatedfunctiontesthippocampusrat

Similar Articles

Cited By