Early or late IL-10 blockade enhances Th1 and Th17 effector responses and promotes fungal clearance in mice with cryptococcal lung infection.

Benjamin J Murdock, Seagal Teitz-Tennenbaum, Gwo-Hsiao Chen, Anthony J Dils, Antoni N Malachowski, Jeffrey L Curtis, Michal A Olszewski, John J Osterholzer
Author Information
  1. Benjamin J Murdock: Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109;
  2. Seagal Teitz-Tennenbaum: Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109;
  3. Gwo-Hsiao Chen: Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109;
  4. Anthony J Dils: Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109;
  5. Antoni N Malachowski: Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109;
  6. Jeffrey L Curtis: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109.
  7. Michal A Olszewski: Research Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109.
  8. John J Osterholzer: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Pulmonary Section, Medical Service, Veterans Affairs Ann Arbor Healthcare System, Department of Veterans Affairs Health System, Ann Arbor, MI 48105; and Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109 oster@umich.edu.

Abstract

The potent immunoregulatory properties of IL-10 can counteract protective immune responses and, thereby, promote persistent infections, as evidenced by studies of cryptococcal lung infection in IL-10-deficient mice. To further investigate how IL-10 impairs fungal clearance, the current study used an established murine model of C57BL/6J mice infected with Cryptococcus neoformans strain 52D. Our results demonstrate that fungal persistence is associated with an early and sustained expression of IL-10 by lung leukocytes. To examine whether IL-10-mediated immune modulation occurs during the early or late phase of infection, assessments of fungal burden and immunophenotyping were performed on mice treated with anti-IL-10R-blocking Ab at 3, 6, and 9 d postinfection (dpi) (early phase) or at 15, 18, and 21 dpi (late phase). We found that both early and late IL-10 blockade significantly improved fungal clearance within the lung compared with isotype control treatment when assessed 35 dpi. Immunophenotyping identified that IL-10 blockade enhanced several critical effector mechanisms, including increased accumulation of CD4(+) T cells and B cells, but not CD8(+) T cells; specific increases in the total numbers of Th1 and Th17 cells; and increased accumulation and activation of CD11b(+) dendritic cells and exudate macrophages. Importantly, IL-10 blockade effectively abrogated dissemination of C. neoformans to the brain. Collectively, this study identifies early and late cellular and molecular mechanisms through which IL-10 impairs fungal clearance and highlights the therapeutic potential of IL-10 blockade in the treatment of fungal lung infections.

References

  1. Proc Am Thorac Soc. 2010 May;7(3):163-8 [PMID: 20463243]
  2. Nat Rev Immunol. 2010 Mar;10(3):170-81 [PMID: 20154735]
  3. Infect Immun. 2011 Aug;79(8):2964-73 [PMID: 21576331]
  4. Infect Immun. 1996 Jul;64(7):2846-9 [PMID: 8698522]
  5. J Infect Dis. 1998 Jun;177(6):1639-46 [PMID: 9607844]
  6. Nat Med. 2009 Mar;15(3):277-84 [PMID: 19234462]
  7. Am J Pathol. 2010 Nov;177(5):2459-71 [PMID: 20864680]
  8. Infect Immun. 2008 Sep;76(9):4322-31 [PMID: 18591227]
  9. Cytokine Growth Factor Rev. 2010 Oct;21(5):331-44 [PMID: 21115385]
  10. Infect Immun. 2014 Mar;82(3):937-48 [PMID: 24324191]
  11. J Immunol. 2012 Dec 15;189(12):5820-30 [PMID: 23175699]
  12. mBio. 2013 Jul 02;4(4): [PMID: 23820392]
  13. Medicine (Baltimore). 2007 Jul;86(4):252-258 [PMID: 17632267]
  14. Transpl Immunol. 2006 Aug;16(2):69-72 [PMID: 16860707]
  15. J Exp Med. 1991 Apr 1;173(4):793-800 [PMID: 1672543]
  16. Infect Immun. 2001 Oct;69(10):6445-55 [PMID: 11553589]
  17. Cell Immunol. 2003 Apr;222(2):116-25 [PMID: 12826081]
  18. Infect Immun. 1999 Jul;67(7):3601-9 [PMID: 10377145]
  19. Proc Am Thorac Soc. 2010 May;7(3):186-96 [PMID: 20463247]
  20. Infect Dis Clin North Am. 2010 Sep;24(3):557-77 [PMID: 20674792]
  21. Infect Immun. 2010 Mar;78(3):1049-57 [PMID: 20048044]
  22. PLoS Pathog. 2011 Aug;7(8):e1002173 [PMID: 21829368]
  23. Am J Pathol. 2011 Jan;178(1):198-211 [PMID: 21224057]
  24. Infect Immun. 2012 Apr;80(4):1424-36 [PMID: 22252873]
  25. Am J Pathol. 2012 Apr;180(4):1547-59 [PMID: 22342846]
  26. Infect Immun. 2011 May;79(5):1915-26 [PMID: 21383052]
  27. J Immunol. 2012 Apr 15;188(8):3940-8 [PMID: 22422883]
  28. Chest. 2007 Sep;132(3):952-8 [PMID: 17573510]
  29. Annu Rev Immunol. 2001;19:683-765 [PMID: 11244051]
  30. Infect Immun. 2008 Jun;76(6):2379-91 [PMID: 18391002]
  31. J Immunol. 1998 Mar 1;160(5):2393-400 [PMID: 9498782]
  32. J Immunol. 2013 Jul 1;191(1):238-48 [PMID: 23733871]
  33. J Immunol. 2003 Jun 15;170(12):6125-32 [PMID: 12794142]
  34. Infect Immun. 1991 Apr;59(4):1423-33 [PMID: 1825990]
  35. J Immunol. 2009 Dec 15;183(12):8044-53 [PMID: 19933856]
  36. Clin Exp Immunol. 1997 Aug;109(2):242-7 [PMID: 9276518]
  37. Clin Infect Dis. 2010 Dec 15;51(12):1383-91 [PMID: 21054179]
  38. Infect Immun. 2005 Mar;73(3):1788-96 [PMID: 15731080]
  39. N Engl J Med. 1991 Feb 28;324(9):580-4 [PMID: 1992319]
  40. Immunol Res. 2005;33(1):53-68 [PMID: 16120972]
  41. Infect Immun. 1999 Dec;67(12):6314-20 [PMID: 10569743]
  42. Res Immunol. 1998 May-Jun;149(4-5):387-96; discussion 512-4 [PMID: 9720956]
  43. Infect Immun. 1997 Feb;65(2):525-30 [PMID: 9009308]
  44. J Immunol. 2008 Jul 1;181(1):610-20 [PMID: 18566428]
  45. PLoS One. 2012;7(10):e47853 [PMID: 23110112]
  46. Future Microbiol. 2010 Aug;5(8):1269-88 [PMID: 20722603]
  47. J Leukoc Biol. 2003 Sep;74(3):370-8 [PMID: 12949240]
  48. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20428-33 [PMID: 19075244]
  49. J Immunol. 2005 Jan 15;174(2):1027-36 [PMID: 15634927]
  50. J Immunol. 2005 May 15;174(10):6346-56 [PMID: 15879135]
  51. Am J Pathol. 2009 Mar;174(3):932-43 [PMID: 19218345]
  52. J Infect. 1997 Nov;35(3):257-63 [PMID: 9459399]
  53. AIDS. 2009 Feb 20;23(4):525-30 [PMID: 19182676]
  54. N Engl J Med. 1986 Feb 27;314(9):529-34 [PMID: 3945290]
  55. Semin Respir Crit Care Med. 2011 Dec;32(6):727-34 [PMID: 22167400]

Grants

  1. I01 BX000656/BLRD VA
  2. I01 BX002120/BLRD VA
  3. T32 HL007749/NHLBI NIH HHS

MeSH Term

Animals
Antibodies, Blocking
B-Lymphocytes
CD8-Positive T-Lymphocytes
Cryptococcosis
Cryptococcus neoformans
Dendritic Cells
Immunophenotyping
Interleukin-10
Lung Diseases, Fungal
Lymphocyte Count
Macrophages
Mice
Mice, Inbred C57BL
Th1 Cells
Th17 Cells

Chemicals

Antibodies, Blocking
IL10 protein, mouse
Interleukin-10

Word Cloud

Created with Highcharts 10.0.0IL-10fungallungearlylateblockadecellsmiceclearanceinfectionphasedpi+immuneresponsesinfectionscryptococcalimpairsstudyneoformanstreatmenteffectormechanismsincreasedaccumulationTTh1Th17potentimmunoregulatorypropertiescancounteractprotectivetherebypromotepersistentevidencedstudiesIL-10-deficientinvestigatecurrentusedestablishedmurinemodelC57BL/6JinfectedCryptococcusstrain52DresultsdemonstratepersistenceassociatedsustainedexpressionleukocytesexaminewhetherIL-10-mediatedmodulationoccursassessmentsburdenimmunophenotypingperformedtreatedanti-IL-10R-blockingAb369dpostinfection151821foundsignificantlyimprovedwithincomparedisotypecontrolassessed35ImmunophenotypingidentifiedenhancedseveralcriticalincludingCD4BCD8specificincreasestotalnumbersactivationCD11bdendriticexudatemacrophagesImportantlyeffectivelyabrogateddisseminationCbrainCollectivelyidentifiescellularmolecularhighlightstherapeuticpotentialEarlyenhancespromotes

Similar Articles

Cited By