Mangiferin attenuates diabetic nephropathy by inhibiting oxidative stress mediated signaling cascade, TNFα related and mitochondrial dependent apoptotic pathways in streptozotocin-induced diabetic rats.

Pabitra Bikash Pal, Krishnendu Sinha, Parames C Sil
Author Information
  1. Pabitra Bikash Pal: Division of Molecular Medicine, Bose Institute, Kolkata, India.
  2. Krishnendu Sinha: Division of Molecular Medicine, Bose Institute, Kolkata, India.
  3. Parames C Sil: Division of Molecular Medicine, Bose Institute, Kolkata, India.

Abstract

Oxidative stress plays a crucial role in the progression of diabetic nephropathy in hyperglycemic conditions. It has already been reported that mangiferin, a natural C-glucosyl xanthone and polyhydroxy polyphenol compound protects kidneys from diabetic nephropathy. However, little is known about the mechanism of its beneficial action in this pathophysiology. The present study, therefore, examines the detailed mechanism of the beneficial action of mangiferin on STZ-induced diabetic nephropathy in Wister rats as the working model. A significant increase in plasma glucose level, kidney to body weight ratio, glomerular hypertrophy and hydropic changes as well as enhanced nephrotoxicity related markers (BUN, plasma creatinine, uric acid and urinary albumin) were observed in the experimental animals. Furthermore, increased oxidative stress related parameters, increased ROS production and decreased the intracellular antioxidant defenses were detected in the kidney. Studies on the oxidative stress mediated signaling cascades in diabetic nephropathy demonstrated that PKC isoforms (PKCα, PKCβ and PKCε), MAPKs (p38, JNK and ERK1/2), transcription factor (NF-κB) and TGF-β1 pathways were involved in this pathophysiology. Besides, TNFα was released in this hyperglycemic condition, which in turn activated caspase 8, cleaved Bid to tBid and finally the mitochorndia-dependent apoptotic pathway. In addition, oxidative stress also disturbed the proapoptotic-antiapoptotic (Bax and Bcl-2) balance and activated mitochorndia-dependent apoptosis via caspase 9, caspase 3 and PARP cleavage. Mangiferin treatment, post to hyperglycemia, successfully inhibited all of these changes and protected the cells from apoptotic death.

References

  1. Kidney Int Suppl. 2005 Apr;(94):S60-2 [PMID: 15752242]
  2. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  3. Cell. 1998 Aug 21;94(4):481-90 [PMID: 9727491]
  4. J Ethnopharmacol. 2003 Jan;84(1):11-5 [PMID: 12499070]
  5. Biochimie. 2012 Jun;94(6):1356-67 [PMID: 22429871]
  6. PLoS One. 2013;8(2):e56894 [PMID: 23451106]
  7. Toxicol Appl Pharmacol. 2012 Apr 1;260(1):35-47 [PMID: 22310181]
  8. Cancer Lett. 2001 Feb 26;163(2):163-70 [PMID: 11165750]
  9. EMBO J. 1998 Mar 16;17(6):1675-87 [PMID: 9501089]
  10. J Immunol. 1987 Nov 15;139(10):3199-206 [PMID: 3680944]
  11. Tetrahedron Lett. 1969 Mar;(12):941-4 [PMID: 5790162]
  12. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):296-308 [PMID: 22138235]
  13. Biosci Biotechnol Biochem. 2010;74(7):1355-61 [PMID: 20622454]
  14. Amino Acids. 2012 May;42(5):1669-83 [PMID: 21373768]
  15. Chem Biol Interact. 2009 Jan 27;177(2):96-106 [PMID: 18835260]
  16. Chin Med J (Engl). 2007 May 5;120(9):787-93 [PMID: 17531120]
  17. PLoS One. 2014 Feb 19;9(2):e89026 [PMID: 24586486]
  18. J Clin Invest. 2001 Jan;107(2):217-24 [PMID: 11160138]
  19. Free Radic Res. 2012 Jun;46(6):785-98 [PMID: 22448708]
  20. Bioessays. 2003 Sep;25(9):888-96 [PMID: 12938178]
  21. Pathophysiology. 2012 Apr;19(2):101-14 [PMID: 22424982]
  22. Free Radic Res. 2012 Feb;46(2):116-32 [PMID: 22118634]
  23. Arch Biochem Biophys. 1959 May;82(1):70-7 [PMID: 13650640]
  24. Protein J. 2006 Sep;25(6):411-21 [PMID: 17091391]
  25. Annu Rev Cell Dev Biol. 1999;15:269-90 [PMID: 10611963]
  26. Amino Acids. 2012 Oct;43(4):1509-23 [PMID: 22302365]
  27. Toxicology. 2011 May 10;283(2-3):129-39 [PMID: 21420465]
  28. J Am Soc Nephrol. 2002 Apr;13(4):894-902 [PMID: 11912248]
  29. Mini Rev Med Chem. 2013 Mar;13(3):439-55 [PMID: 23190031]
  30. Phytother Res. 2003 Dec;17(10):1203-8 [PMID: 14669257]
  31. Toxicol In Vitro. 2014 Mar;28(2):307-18 [PMID: 24291162]
  32. Phytother Res. 2010 Jun;24(6):893-9 [PMID: 19960420]
  33. Phytother Res. 1999 Sep;13(6):504-7 [PMID: 10479762]
  34. Physiol Res. 2001;50(6):537-46 [PMID: 11829314]
  35. Kidney Int. 1999 Aug;56(2):393-405 [PMID: 10432377]
  36. Aging (Milano). 1996 Apr;8(2):123-9 [PMID: 8737611]
  37. Anal Biochem. 1976 Jul;74(1):214-26 [PMID: 962076]
  38. Nature. 2001 Dec 13;414(6865):813-20 [PMID: 11742414]
  39. Diabetes. 1997 Mar;46(3):473-80 [PMID: 9032105]
  40. Ann Pharm Fr. 2004 May;62(3):147-57 [PMID: 15243348]
  41. Kidney Int. 2000 Feb;57(2):464-75 [PMID: 10652023]
  42. Food Chem Toxicol. 2013 Jun;56:119-30 [PMID: 23435124]
  43. Indian J Pathol Microbiol. 2002 Jul;45(3):307-10 [PMID: 12785172]
  44. Neurochem Int. 1990;17(3):435-40 [PMID: 20504643]
  45. Free Radic Res. 1995 Apr;22(4):375-83 [PMID: 7633567]
  46. J Am Soc Nephrol. 2003 Aug;14(8 Suppl 3):S241-5 [PMID: 12874439]
  47. Diabetes. 1999 Jan;48(1):1-9 [PMID: 9892215]
  48. Chemotherapy. 1996 Nov-Dec;42(6):443-51 [PMID: 8957579]
  49. Diabetes. 2008 Jun;57(6):1446-54 [PMID: 18511445]
  50. Arch Biochem Biophys. 1961 May;93:440-7 [PMID: 13786180]
  51. J Am Soc Nephrol. 1997 Mar;8(3):487-93 [PMID: 9071718]
  52. Free Radic Biol Med. 2010 Feb 15;48(4):535-53 [PMID: 19969075]
  53. Phytomedicine. 2001 Mar;8(2):85-7 [PMID: 11315760]
  54. Diabetol Metab Syndr. 2009 Sep 21;1(1):10 [PMID: 19825147]
  55. J Biol Chem. 2003 Sep 19;278(38):36916-23 [PMID: 12842894]
  56. Biochim Biophys Acta. 2011 Jul;1812(7):719-31 [PMID: 21439372]
  57. J Biochem Mol Biol. 2007 May 31;40(3):382-95 [PMID: 17562290]
  58. Am J Physiol Renal Physiol. 2012 Jan 1;302(1):F85-94 [PMID: 21900456]
  59. Free Radic Biol Med. 2010 Jun 1;48(11):1465-84 [PMID: 20188823]
  60. Food Chem Toxicol. 2007 May;45(5):817-26 [PMID: 17175085]
  61. Mol Nutr Food Res. 2011 Nov;55(11):1655-65 [PMID: 22045654]
  62. J Clin Invest. 1997 Dec 15;100(12):2995-3004 [PMID: 9399945]
  63. Toxicology. 2002 Jul 15;176(3):165-73 [PMID: 12093613]
  64. J Biol Chem. 1993 Mar 25;268(9):6388-93 [PMID: 8454610]
  65. Indian J Biochem Biophys. 2006 Oct;43(5):299-305 [PMID: 17133737]
  66. Methods Enzymol. 1990;186:407-21 [PMID: 2233308]
  67. J Am Soc Nephrol. 2007 Jan;18(1):16-28 [PMID: 17167116]

MeSH Term

Animals
Antioxidants
Apoptosis
Apoptosis Regulatory Proteins
Blood Glucose
Diabetes Mellitus, Experimental
Diabetic Nephropathies
Glycation End Products, Advanced
Hydroxyproline
Hyperglycemia
Kidney Glomerulus
Male
Mitochondria
Mitogen-Activated Protein Kinases
NF-kappa B
Oxidative Stress
Protein Kinase C
Rats
Rats, Wistar
Reactive Oxygen Species
Signal Transduction
Streptozocin
Transforming Growth Factor beta1
Tumor Necrosis Factor-alpha
Xanthine Oxidase
Xanthones

Chemicals

Antioxidants
Apoptosis Regulatory Proteins
Blood Glucose
Glycation End Products, Advanced
NF-kappa B
Reactive Oxygen Species
Transforming Growth Factor beta1
Tumor Necrosis Factor-alpha
Xanthones
mangiferin
Streptozocin
Xanthine Oxidase
Protein Kinase C
Mitogen-Activated Protein Kinases
Hydroxyproline

Word Cloud

Created with Highcharts 10.0.0diabeticstressnephropathyoxidativerelatedcaspaseapoptotichyperglycemicmangiferinmechanismbeneficialactionpathophysiologyratsplasmakidneychangesincreasedmediatedsignalingpathwaysTNFαactivatedmitochorndia-dependentMangiferinOxidativeplayscrucialroleprogressionconditionsalreadyreportednaturalC-glucosylxanthonepolyhydroxypolyphenolcompoundprotectskidneysHoweverlittleknownpresentstudythereforeexaminesdetailedSTZ-inducedWisterworkingmodelsignificantincreaseglucoselevelbodyweightratioglomerularhypertrophyhydropicwellenhancednephrotoxicitymarkersBUNcreatinineuricacidurinaryalbuminobservedexperimentalanimalsFurthermoreparametersROSproductiondecreasedintracellularantioxidantdefensesdetectedStudiescascadesdemonstratedPKCisoformsPKCαPKCβPKCεMAPKsp38JNKERK1/2transcriptionfactorNF-κBTGF-β1involvedBesidesreleasedconditionturn8cleavedBidtBidfinallypathwayadditionalsodisturbedproapoptotic-antiapoptoticBaxBcl-2balanceapoptosisvia93PARPcleavagetreatmentposthyperglycemiasuccessfullyinhibitedprotectedcellsdeathattenuatesinhibitingcascademitochondrialdependentstreptozotocin-induced

Similar Articles

Cited By