Manipulating galectin expression in zebrafish (Danio rerio).

Chiguang Feng, Mihai Nita-Lazar, Nuria González-Montalbán, Jingyu Wang, Justin Mancini, Chinnarajan Ravindran, Hafiz Ahmed, Gerardo R Vasta
Author Information
  1. Chiguang Feng: Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA.

Abstract

Techniques for disrupting gene expression are invaluable tools for the analysis of the biological role(s) of a gene product. Because of its genetic tractability and multiple advantages over conventional mammalian models, the zebrafish (Danio rerio) is recognized as a powerful system for gaining new insight into diverse aspects of human health and disease. Among the multiple mammalian gene families for which the zebrafish has shown promise as an invaluable model for functional studies, the galectins have attracted great interest due to their participation in early development, regulation of immune homeostasis, and recognition of microbial pathogens. Galectins are β-galactosyl-binding lectins with a characteristic sequence motif in their carbohydrate recognition domains (CRDs), which comprise an evolutionary conserved family ubiquitous in eukaryotic taxa. Galectins are emerging as key players in the modulation of many important pathological processes, which include acute and chronic inflammatory diseases, autoimmunity and cancer, thus making them potential molecular targets for innovative drug discovery. Here, we provide a review of the current methods available for the manipulation of gene expression in the zebrafish, with a focus on gene knockdown [morpholino (MO)-derived antisense oligonucleotides] and knockout (CRISPR-Cas) technologies.

References

  1. Development. 2012 May;139(9):1691-9 [PMID: 22492359]
  2. Glycobiology. 2004 Mar;14(3):219-32 [PMID: 14693912]
  3. Glycobiology. 2009 Jan;19(1):16-20 [PMID: 18849325]
  4. Nat Biotechnol. 2000 Apr;18(4):455-7 [PMID: 10748531]
  5. Nat Rev Microbiol. 2009 Jun;7(6):424-38 [PMID: 19444247]
  6. Autophagy. 2013 Apr;9(4):476-95 [PMID: 23348054]
  7. Nat Biotechnol. 2013 Mar;31(3):227-9 [PMID: 23360964]
  8. Glycoconj J. 2009 Apr;26(3):277-83 [PMID: 18763034]
  9. Development. 1996 Dec;123:37-46 [PMID: 9007227]
  10. Mech Dev. 1999 Feb;80(2):153-8 [PMID: 10072782]
  11. Genome Res. 2003 Dec;13(12):2700-7 [PMID: 14613981]
  12. Dev Dyn. 2007 Nov;236(11):3071-6 [PMID: 17907198]
  13. Development. 2000 May;127(9):1953-60 [PMID: 10751183]
  14. Dev Comp Immunol. 2008;32(7):745-57 [PMID: 18222541]
  15. Mol Cancer Res. 2008 May;6(5):685-94 [PMID: 18505914]
  16. Biochim Biophys Acta. 1999 Dec 10;1489(1):141-58 [PMID: 10807004]
  17. Dis Model Mech. 2013 May;6(3):652-60 [PMID: 23471908]
  18. Biochem Biophys Res Commun. 2008 Jul 4;371(3):350-5 [PMID: 18448074]
  19. Fish Shellfish Immunol. 2001 Apr;11(3):217-31 [PMID: 11394689]
  20. Zebrafish. 2011 Sep;8(3):147-9 [PMID: 21929364]
  21. Biochem Biophys Res Commun. 2007 Jun 29;358(2):521-7 [PMID: 17493584]
  22. Curr Opin Struct Biol. 2007 Oct;17(5):513-20 [PMID: 17950594]
  23. Genome Res. 2000 Sep;10(9):1351-8 [PMID: 10984453]
  24. Behav Processes. 2013 Sep;98:106-11 [PMID: 23727035]
  25. Methods Enzymol. 2003;363:3-16 [PMID: 14579563]
  26. Int Immunopharmacol. 2011 Oct;11(10):1457-63 [PMID: 21600310]
  27. J Neurochem. 2009 Jul;110(2):441-56 [PMID: 19457087]
  28. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5052-7 [PMID: 23479624]
  29. Zebrafish. 2008 Summer;5(2):121-3 [PMID: 18554175]
  30. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  31. Nat Genet. 2000 Oct;26(2):216-20 [PMID: 11017081]
  32. PLoS One. 2013;8(1):e55503 [PMID: 23383208]
  33. Adv Exp Med Biol. 2007;598:389-406 [PMID: 17892226]
  34. Ann N Y Acad Sci. 1994 Apr 15;712:318-20 [PMID: 8192338]
  35. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  36. Comp Biochem Physiol B Biochem Mol Biol. 1999 May;123(1):33-45 [PMID: 10425711]
  37. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  38. Nature. 1981 May 28;291(5813):293-6 [PMID: 7248006]
  39. Dev Dyn. 2007 Apr;236(4):1025-35 [PMID: 17326133]
  40. Development. 1996 Dec;123:1-36 [PMID: 9007226]
  41. Glycoconj J. 2004;21(8-9):503-21 [PMID: 15750792]

Grants

  1. R01 GM070589/NIGMS NIH HHS
  2. 5R01GM070589-06/NIGMS NIH HHS

MeSH Term

Animals
Base Sequence
Embryo, Nonmammalian
Female
Galectins
Gene Expression Regulation
Gene Knockdown Techniques
Gene Knockout Techniques
Injections
Male
Morpholinos
Phenotype
RNA
Zebrafish

Chemicals

Galectins
Morpholinos
RNA

Word Cloud

Created with Highcharts 10.0.0genezebrafishexpressioninvaluablemultiplemammalianDanioreriorecognitionGalectinsTechniquesdisruptingtoolsanalysisbiologicalrolesproductgenetictractabilityadvantagesconventionalmodelsrecognizedpowerfulsystemgainingnewinsightdiverseaspectshumanhealthdiseaseAmongfamiliesshownpromisemodelfunctionalstudiesgalectinsattractedgreatinterestdueparticipationearlydevelopmentregulationimmunehomeostasismicrobialpathogensβ-galactosyl-bindinglectinscharacteristicsequencemotifcarbohydratedomainsCRDscompriseevolutionaryconservedfamilyubiquitouseukaryotictaxaemergingkeyplayersmodulationmanyimportantpathologicalprocessesincludeacutechronicinflammatorydiseasesautoimmunitycancerthusmakingpotentialmoleculartargetsinnovativedrugdiscoveryprovidereviewcurrentmethodsavailablemanipulationfocusknockdown[morpholinoMO-derivedantisenseoligonucleotides]knockoutCRISPR-CastechnologiesManipulatinggalectin

Similar Articles

Cited By (7)