How aquatic water-beetle larvae with small chambered eyes overcome challenges of hunting under water.

Annette Stowasser, Elke K Buschbeck
Author Information
  1. Annette Stowasser: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221-0006, USA.

Abstract

A particularly unusual visual system exists in the visually guided aquatic predator, the Sunburst Diving Beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). The question arises: how does this peculiar visual system function? A series of experiments suggests that their principal eyes (E1 and E2) are highly specialized for hunting. These eyes are tubular and have relatively long focal lengths leading to high image magnification. Their retinae are linear, and are divided into distinct green-sensitive distal and UV and polarization-sensitive proximal portions. Each distal retina, moreover, has many tiers of photoreceptors with rhabdomeres the long axis of which are peculiarly oriented perpendicular to the light path. Based on detailed optical investigations, the lenses of these eyes are bifocal and project focused images onto specific retinal tiers. Behavioral experiments suggest that these larvae approach prey within their eyes' near-fields, and that they can correctly gauge prey distances even when conventional distance-vision mechanisms are unavailable. In the near-field of these eyes object distance determines which of the many retinal layers receive the best-focused images. This retinal organization could facilitate an unusual distance-vision mechanism. We here summarize past findings and discuss how these eyes allow Thermonectus larvae to be such successful predators.

References

  1. Science. 2012 Jan 27;335(6067):469-71 [PMID: 22282813]
  2. Vision Res. 2000;40(25):3501-6 [PMID: 11115677]
  3. J Exp Biol. 1969 Nov;51(2):443-70 [PMID: 5351425]
  4. J Exp Biol. 1999 Dec;202 Pt 24:3631-5 [PMID: 10574740]
  5. Prog Neurobiol. 1993 Apr;40(4):413-61 [PMID: 8446759]
  6. Arthropod Struct Dev. 2007 Dec;36(4):449-62 [PMID: 18089121]
  7. Curr Biol. 2014 Jan 20;24(2):R64-R65 [PMID: 24456975]
  8. Curr Biol. 2012 Mar 6;22(5):426-31 [PMID: 22326024]
  9. Z Vgl Physiol. 1951;33(2):63-98 [PMID: 24540838]
  10. J Exp Biol. 1995;198(Pt 10):2127-37 [PMID: 9320039]
  11. J Exp Biol. 2011 Nov 1;214(Pt 21):3524-31 [PMID: 21993780]
  12. Curr Biol. 2010 Aug 24;20(16):1482-6 [PMID: 20691594]
  13. Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):649-54 [PMID: 21282168]
  14. Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):619-26 [PMID: 21282165]
  15. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Sep;193(9):973-82 [PMID: 17639412]
  16. J Exp Biol. 2012 Oct 15;215(Pt 20):3577-86 [PMID: 22771743]
  17. J Comp Neurol. 2006 Jul 10;497(2):166-81 [PMID: 16705677]
  18. Perception. 1997;26(9):1147-58 [PMID: 9509149]
  19. Vision Res. 2000;40(7):843-53 [PMID: 10683460]
  20. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Nov;189(11):791-800 [PMID: 14520495]
  21. Vision Res. 2006 Feb;46(4):444-56 [PMID: 16023168]
  22. J Exp Biol. 2014 Feb 1;217(Pt 3):327-30 [PMID: 24477608]
  23. J Exp Biol. 2010 Dec 15;213(Pt 24):4240-8 [PMID: 21113005]
  24. J Exp Biol. 2001 Feb;204(Pt 4):615-25 [PMID: 11171344]
  25. J Exp Biol. 2014 Aug 15;217(Pt 16):2818-24 [PMID: 25122913]
  26. J Comp Physiol A. 1990 Nov;167(5):579-88 [PMID: 2074547]
  27. J Exp Biol. 1969 Nov;51(2):471-93 [PMID: 5351426]
  28. IEEE Trans Pattern Anal Mach Intell. 1987 Apr;9(4):523-31 [PMID: 21869410]
  29. J Exp Biol. 2009 Dec;212(Pt 23):3781-94 [PMID: 19915119]
  30. Vision Res. 2007 Jun;47(13):1756-68 [PMID: 17485105]
  31. Arthropod Struct Dev. 2006 Dec;35(4):247-59 [PMID: 18089074]
  32. Vision Res. 2000;40(1):71-5 [PMID: 10768043]
  33. J Biol Rhythms. 2007 Feb;22(1):29-42 [PMID: 17229923]
  34. Science. 1999 Nov 5;286(5442):1178-80 [PMID: 10550059]
  35. Neuroscience. 2002;114(1):19-22 [PMID: 12207951]
  36. J Exp Biol. 2014 Jul 15;217(Pt 14):2509-16 [PMID: 24803456]
  37. Optom Vis Sci. 2009 Feb;86(2):E98-105 [PMID: 19156009]
  38. J Opt Soc Am A Opt Image Sci Vis. 2012 Sep 1;29(9):1965-76 [PMID: 23201954]

MeSH Term

Animals
Coleoptera
Compound Eye, Arthropod
Environment
Larva
Predatory Behavior
Water

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0eyesretinallarvaeunusualvisualsystemaquaticThermonectusexperimentshuntinglongdistalmanytiersimagespreydistance-visionparticularlyexistsvisuallyguidedpredatorSunburstDivingBeetlemarmoratusColeoptera:Dytiscidaequestionarises:peculiarfunction?seriessuggestsprincipalE1E2highlyspecializedtubularrelativelyfocallengthsleadinghighimagemagnificationretinaelineardivideddistinctgreen-sensitiveUVpolarization-sensitiveproximalportionsretinamoreoverphotoreceptorsrhabdomeresaxispeculiarlyorientedperpendicularlightpathBaseddetailedopticalinvestigationslensesbifocalprojectfocusedontospecificBehavioralsuggestapproachwithineyes'near-fieldscancorrectlygaugedistancesevenconventionalmechanismsunavailablenear-fieldobjectdistancedetermineslayersreceivebest-focusedorganizationfacilitatemechanismsummarizepastfindingsdiscussallowsuccessfulpredatorswater-beetlesmallchamberedovercomechallengeswater

Similar Articles

Cited By