Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.

Tanvir Alam, Yulia A Medvedeva, Hui Jia, James B Brown, Leonard Lipovich, Vladimir B Bajic
Author Information
  1. Tanvir Alam: King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia.
  2. Yulia A Medvedeva: King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia.
  3. Hui Jia: Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America.
  4. James B Brown: Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.
  5. Leonard Lipovich: Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America; Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America.
  6. Vladimir B Bajic: King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia.

Abstract

Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

References

  1. Nucleic Acids Res. 2012 Jan;40(Database issue):D337-42 [PMID: 22140112]
  2. Nature. 2013 Aug 29;500(7464):598-602 [PMID: 23945587]
  3. Genome Res. 2012 Sep;22(9):1775-89 [PMID: 22955988]
  4. BMC Bioinformatics. 2009 Aug 04;10:239 [PMID: 19653905]
  5. Nature. 2011 Feb 10;470(7333):284-8 [PMID: 21307942]
  6. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  7. Nat Neurosci. 2009 Aug;12(8):1020-7 [PMID: 19620975]
  8. J Biol Chem. 2012 Apr 20;287(17):13899-910 [PMID: 22378788]
  9. J Cell Biochem. 2013 Oct;114(10):2375-83 [PMID: 23649634]
  10. Front Genet. 2013 Sep 26;4:183 [PMID: 24133500]
  11. Genetics. 2012 Nov;192(3):1133-48 [PMID: 22960213]
  12. Genome Res. 2012 Sep;22(9):1798-812 [PMID: 22955990]
  13. Genes Dev. 2011 Sep 15;25(18):1915-27 [PMID: 21890647]
  14. Mol Cell. 2005 Aug 5;19(3):381-91 [PMID: 16061184]
  15. Science. 2005 Sep 2;309(5740):1564-6 [PMID: 16141073]
  16. Nat Genet. 2008 Jul;40(7):897-903 [PMID: 18552846]
  17. Cell. 2010 Oct 1;143(1):46-58 [PMID: 20887892]
  18. Funct Integr Genomics. 2007 Jul;7(3):221-7 [PMID: 17340149]
  19. Nature. 2014 Jan 30;505(7485):635-40 [PMID: 24463510]
  20. RNA. 2009 Jan;15(1):85-96 [PMID: 19050060]
  21. Trends Biochem Sci. 2010 Jun;35(6):323-32 [PMID: 20346678]
  22. Genome Res. 2006 Jan;16(1):45-54 [PMID: 16344557]
  23. Nat Rev Genet. 2005 May;6(5):410-8 [PMID: 15818384]
  24. EMBO J. 2010 Jul 7;29(13):2147-60 [PMID: 20517297]
  25. J Cell Sci. 2003 Jun 1;116(Pt 11):2117-24 [PMID: 12730288]
  26. RNA. 2010 Aug;16(8):1478-87 [PMID: 20587619]
  27. Hum Mol Genet. 2003 Oct 1;12(19):2411-5 [PMID: 12915446]
  28. FEBS Lett. 2009 Jun 5;583(11):1713-20 [PMID: 19376112]
  29. Genome Res. 2012 Sep;22(9):1646-57 [PMID: 22955977]
  30. Nucleic Acids Res. 2013 Dec;41(22):10044-61 [PMID: 24038472]
  31. Genome Biol. 2012 Nov 27;13(11):R110 [PMID: 23186133]
  32. Nucleic Acids Res. 2013 Feb 1;41(3):e48 [PMID: 23234700]
  33. Nature. 2010 Apr 1;464(7289):773-7 [PMID: 20220756]
  34. Nucleic Acids Res. 2010 Jan;38(2):534-47 [PMID: 19906709]
  35. Nat Struct Mol Biol. 2010 May;17(5):617-9 [PMID: 20400950]
  36. Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7 [PMID: 16432200]
  37. Nat Rev Genet. 2009 Apr;10(4):252-63 [PMID: 19274049]
  38. Cell. 2006 Apr 21;125(2):315-26 [PMID: 16630819]
  39. Nucleic Acids Res. 2013 Jan;41(Database issue):D195-202 [PMID: 23175603]
  40. Nature. 2010 Apr 15;464(7291):1071-6 [PMID: 20393566]
  41. Front Genet. 2012 Jun 01;3:100 [PMID: 22670148]
  42. Nature. 2012 Nov 15;491(7424):454-7 [PMID: 23064229]
  43. Genome Res. 2012 Sep;22(9):1790-7 [PMID: 22955989]
  44. Nat Genet. 2006 Jun;38(6):626-35 [PMID: 16645617]
  45. Nature. 2012 Sep 6;489(7414):75-82 [PMID: 22955617]
  46. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  47. J Allergy Clin Immunol. 2013 Oct;132(4):1005-8 [PMID: 23870669]
  48. Genes Dev. 2013 Jun 15;27(12):1318-38 [PMID: 23788621]
  49. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W345-9 [PMID: 17631615]
  50. Nat Genet. 2006 Apr;38(4):431-40 [PMID: 16518401]
  51. Genome Res. 2012 Sep;22(9):1760-74 [PMID: 22955987]
  52. Neurobiol Aging. 2013 Jul;34(7):1825-36 [PMID: 23428183]
  53. Biochim Biophys Acta. 2010 Sep;1799(9):597-615 [PMID: 20951849]
  54. Annu Rev Genomics Hum Genet. 2006;7:29-59 [PMID: 16719718]
  55. Nat Genet. 1999 Apr;21(4):400-4 [PMID: 10192391]
  56. Nature. 2011 May 5;473(7345):43-9 [PMID: 21441907]
  57. Nucleic Acids Res. 2010 Nov;38(21):7736-48 [PMID: 20675357]
  58. Science. 2012 Sep 7;337(6099):1190-5 [PMID: 22955828]
  59. Nature. 2013 Nov 21;503(7476):371-6 [PMID: 24107992]
  60. Sci Signal. 2010 Feb 02;3(107):ra8 [PMID: 20124551]
  61. Nature. 2001 Feb 15;409(6822):860-921 [PMID: 11237011]
  62. Biochem Biophys Res Commun. 2008 Aug 8;372(4):691-6 [PMID: 18538132]
  63. PLoS Genet. 2010 Sep 23;6(9):e1001134 [PMID: 20885785]
  64. Nat Chem Biol. 2007 Mar;3(3):166-73 [PMID: 17259978]
  65. BMC Genomics. 2010 Jan 19;11:48 [PMID: 20085634]
  66. Nucleic Acids Res. 2007;35(10):3431-41 [PMID: 17478518]
  67. BMC Genomics. 2013;14 Suppl 2:S7 [PMID: 23445546]
  68. Cell. 2013 Jul 3;154(1):240-51 [PMID: 23810193]
  69. Genome Biol. 2012 Jun 13;13(9):R53 [PMID: 22950368]
  70. PLoS Genet. 2006 Apr;2(4):e47 [PMID: 16683030]
  71. Cell. 1999 Apr 2;97(1):17-27 [PMID: 10199399]
  72. Nat Immunol. 2013 Nov;14(11):1190-8 [PMID: 24056746]
  73. RNA. 2010 Feb;16(2):324-37 [PMID: 20026622]
  74. Nucleic Acids Res. 1997 Jan 1;25(1):1-6 [PMID: 9016491]
  75. PLoS Genet. 2006 Apr;2(4):e29 [PMID: 16683024]

Grants

  1. DP2 CA196375/NCI NIH HHS
  2. K99 HG006698/NHGRI NIH HHS
  3. U01 HG007031/NHGRI NIH HHS
  4. 1U01-HG007031/NHGRI NIH HHS

MeSH Term

Binding Sites
Chromatin
Gene Expression Regulation
Genome, Human
Humans
Promoter Regions, Genetic
Protein Binding
Proteins
RNA, Long Noncoding
RNA, Messenger
Transcription Factors
Transcription, Genetic

Chemicals

Chromatin
Proteins
RNA, Long Noncoding
RNA, Messenger
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0geneslncRNAprotein-codingregulationpromotershumantranscriptionalregulatorydistinctTFBSgloballongnon-codingRNAanalysisspecificincludingtranscriptionfactorsignatureseveralbindingprofilesactiveTFslncRNAsmaylevelschromatinTranscriptionalincreasinglywell-understoodscaleyetcomparableinformationexistsrecentlyrecognizednumerousmammaliangenomesperformedgenome-widecomparativefindingdifferencesgeneticepigeneticfeaturesrelevanttwogroupshencesubjectseparateprogramsTFproteinssignificantlyfavorrathercoding-genereportpromoter-proximalsitesExperimentalDNasehypersensitivesiteconsistentconfigurationssetsdiversecelltypesChIP-seqdatasetsconfirmeventspredictedusingcomputationalapproachessubsetfactorsknowndirectlyregulatedfindputativeTFBSsenrichedsuggestingparticipatebidirectionalfeedbackloopnetworkAccordinglycellsablemodulateexpressionindependentlymRNAviapathwaysresultsalsoraisepossibilitygivenhistoricalreliancegenecatalogsdefinestatesrevisionincorporateexpressedwarrantedfuturePromoterrevealsgloballydifferential

Similar Articles

Cited By