New gene models and alternative splicing in the maize pathogen Colletotrichum graminicola revealed by RNA-Seq analysis.

Ivo Schliebner, Rayko Becher, Marcus Hempel, Holger B Deising, Ralf Horbach
Author Information
  1. Ralf Horbach: Interdisciplinary Center for Crop Plant Research, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str, 3, D-06120 Halle (Saale), Germany. ralf.horbach@landw.uni-halle.de.

Abstract

BACKGROUND: An annotated genomic sequence of the corn anthracnose fungus Colletotrichum graminicola has been published previously, but correct identification of gene models by means of automated gene annotation remains a challenge. RNA-Seq offers the potential for substantially improved gene annotations and for the identification of posttranscriptional RNA modifications, such as alternative splicing and RNA editing.
RESULTS: Based on the nucleotide sequence information of transcripts, we identified 819 novel transcriptionally active regions (nTARs) and revised 906 incorrectly predicted gene models, including revisions of exon-intron structure, gene orientation and sequencing errors. Among the nTARs, 146 share significant similarity with proteins that have been identified in other species suggesting that they are hitherto unidentified genes in C. graminicola. Moreover, 5'- and 3'-UTR sequences of 4378 genes have been retrieved and alternatively spliced variants of 69 genes have been identified. Comparative analysis of RNA-Seq data and the genome sequence did not provide evidence for RNA editing in C. graminicola.
CONCLUSIONS: We successfully employed deep sequencing RNA-Seq data in combination with an elaborate bioinformatics strategy in order to identify novel genes, incorrect gene models and mechanisms of transcript processing in the corn anthracnose fungus C. graminicola. Sequence data of the revised genome annotation including several hundreds of novel transcripts, improved gene models and candidate genes for alternative splicing have been made accessible in a comprehensive database. Our results significantly contribute to both routine laboratory experiments and large-scale genomics or transcriptomic studies in C. graminicola.

References

  1. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  2. PLoS Genet. 2009 Apr;5(4):e1000459 [PMID: 19390609]
  3. Nat Rev Genet. 2009 Mar;10(3):155-9 [PMID: 19188922]
  4. Mol Plant Microbe Interact. 2004 Dec;17(12):1337-47 [PMID: 15597739]
  5. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  6. J Plant Physiol. 2011 Jan 1;168(1):51-62 [PMID: 20674079]
  7. BMC Bioinformatics. 2013;14 Suppl 9:S1 [PMID: 23902433]
  8. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8581-6 [PMID: 15173578]
  9. Nucleic Acids Res. 2012 Jan;40(Database issue):D210-5 [PMID: 22135294]
  10. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 [PMID: 15980513]
  11. Nat Biotechnol. 2011 May;29(5):436-42 [PMID: 21516085]
  12. Nat Genet. 2012 Sep;44(9):1060-5 [PMID: 22885923]
  13. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  14. Genome Biol. 2008;9(3):R50 [PMID: 18321378]
  15. Brief Bioinform. 2011 May;12(3):280-7 [PMID: 21498551]
  16. Bioinformatics. 2012 Aug 15;28(16):2184-5 [PMID: 22743226]
  17. Nucleic Acids Res. 2014 Jan;42(Database issue):D705-10 [PMID: 24194595]
  18. Nat Genet. 2008 Dec;40(12):1413-5 [PMID: 18978789]
  19. Nucleic Acids Res. 2010 Aug;38(15):5075-87 [PMID: 20392818]
  20. PLoS Biol. 2010 May 18;8(5):e1000371 [PMID: 20502517]
  21. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  22. Plant Dis. 1999 Jul;83(7):596-608 [PMID: 30845609]
  23. Microbes Infect. 2000 Nov;2(13):1631-41 [PMID: 11113382]
  24. BMC Genomics. 2012 Sep 27;13:511 [PMID: 23016559]
  25. Microbiology (Reading). 2007 Jan;153(Pt 1):7-15 [PMID: 17185530]
  26. Microbiology (Reading). 2010 Jul;156(Pt 7):1909-1917 [PMID: 20430813]
  27. J Phycol. 2013 Jun;49(3):570-9 [PMID: 27007045]
  28. Genome Res. 2008 Sep;18(9):1509-17 [PMID: 18550803]
  29. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  30. Nat Biotechnol. 2007 Aug;25(8):883-5 [PMID: 17687368]
  31. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  32. New Phytol. 2011 Feb;189(3):883-891 [PMID: 21223284]
  33. Nature. 2010 Jan 28;463(7280):457-63 [PMID: 20110989]
  34. Nucleic Acids Res. 2009 Jan;37(Database issue):D89-92 [PMID: 18948287]
  35. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  36. Science. 1999 Sep 17;285(5435):1896-9 [PMID: 10489364]
  37. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  38. Mol Plant Microbe Interact. 2014 Apr;27(4):315-27 [PMID: 24261846]
  39. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  40. PLoS One. 2012;7(12):e50986 [PMID: 23251411]
  41. Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301 [PMID: 22127870]
  42. Genome Res. 2010 Jan;20(1):45-58 [PMID: 19858364]
  43. Nat Rev Genet. 2014 Feb;15(2):121-32 [PMID: 24434847]
  44. Phytopathology. 2002 Jul;92(7):803-12 [PMID: 18943278]
  45. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  46. Genome Res. 2005 Dec;15(12):1620-31 [PMID: 16339359]
  47. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  48. PLoS Pathog. 2012;8(4):e1002643 [PMID: 22496661]
  49. BMC Genomics. 2013 Jan 16;14:21 [PMID: 23324402]
  50. Plant Cell. 2009 Oct;21(10):3379-96 [PMID: 19880801]

MeSH Term

3' Untranslated Regions
Alternative Splicing
Chromosome Mapping
Colletotrichum
Computational Biology
Databases, Genetic
High-Throughput Nucleotide Sequencing
Models, Genetic
Molecular Sequence Annotation
RNA Editing
RNA, Untranslated
Sequence Analysis, RNA
Transcriptome
Zea mays

Chemicals

3' Untranslated Regions
RNA, Untranslated

Word Cloud

Created with Highcharts 10.0.0genegraminicolamodelsgenesRNA-SeqCsequenceRNAalternativesplicingidentifiednoveldatacornanthracnosefungusColletotrichumidentificationannotationimprovededitingtranscriptsnTARsrevisedincludingsequencinganalysisgenomeBACKGROUND:annotatedgenomicpublishedpreviouslycorrectmeansautomatedremainschallengeofferspotentialsubstantiallyannotationsposttranscriptionalmodificationsRESULTS:Basednucleotideinformation819transcriptionallyactiveregions906incorrectlypredictedrevisionsexon-intronstructureorientationerrorsAmong146sharesignificantsimilarityproteinsspeciessuggestinghithertounidentifiedMoreover5'-3'-UTRsequences4378retrievedalternativelysplicedvariants69ComparativeprovideevidenceCONCLUSIONS:successfullyemployeddeepcombinationelaboratebioinformaticsstrategyorderidentifyincorrectmechanismstranscriptprocessingSequenceseveralhundredscandidatemadeaccessiblecomprehensivedatabaseresultssignificantlycontributeroutinelaboratoryexperimentslarge-scalegenomicstranscriptomicstudiesNewmaizepathogenrevealed

Similar Articles

Cited By