Differential regulation of GnRH secretion in the preoptic area (POA) and the median eminence (ME) in male mice.

Katarzyna M Glanowska, Suzanne M Moenter
Author Information
  1. Katarzyna M Glanowska: Neuroscience Graduate Program (K.M.G.), University of Virginia, Charlottesville, Virginia 22908; and Departments of Molecular and Integrative Physiology (S.M.M.), Internal Medicine, and Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109.

Abstract

GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.

References

  1. J Neurosci. 2008 Apr 23;28(17):4423-34 [PMID: 18434521]
  2. J Neurophysiol. 1995 Jan;73(1):56-64 [PMID: 7714589]
  3. Cell Mol Neurobiol. 1995 Feb;15(1):141-64 [PMID: 7648606]
  4. Endocrinology. 2014 Aug;155(8):2953-65 [PMID: 24823392]
  5. Endocrinology. 2009 Jul;150(7):3221-7 [PMID: 19213830]
  6. Neuron. 2002 Aug 1;35(3):507-20 [PMID: 12165472]
  7. Endocrinology. 2009 Jun;150(6):2799-804 [PMID: 19131572]
  8. Endocrinology. 2008 Sep;149(9):4605-14 [PMID: 18483150]
  9. Endocrinology. 2008 Aug;149(8):3926-32 [PMID: 18450966]
  10. Adv Exp Med Biol. 2013;784:133-58 [PMID: 23550005]
  11. Biol Reprod. 2011 Nov;85(5):987-95 [PMID: 21778142]
  12. Br J Pharmacol. 2002 Dec;137(8):1207-12 [PMID: 12466229]
  13. J Biol Chem. 2001 Sep 14;276(37):34631-6 [PMID: 11457843]
  14. Science. 1998 Nov 6;282(5391):1141-4 [PMID: 9804555]
  15. Endocrinology. 2013 Aug;154(8):2772-83 [PMID: 23744639]
  16. J Comp Neurol. 1988 Jul 22;273(4):447-58 [PMID: 3062047]
  17. Endocrinology. 1992 Jan;130(1):503-10 [PMID: 1727719]
  18. J Bone Miner Res. 1995 May;10(5):743-50 [PMID: 7639110]
  19. Mol Endocrinol. 2002 Dec;16(12):2872-91 [PMID: 12456806]
  20. Science. 1998 Nov 6;282(5391):1138-41 [PMID: 9804554]
  21. J Physiol. 1994 Jul 15;478 ( Pt 2):275-87 [PMID: 7525943]
  22. Endocrinology. 2002 Jan;143(1):139-45 [PMID: 11751602]
  23. Endocrinology. 2009 Mar;150(3):1413-20 [PMID: 19008316]
  24. Endocrinology. 2011 Nov;152(11):4310-21 [PMID: 21896672]
  25. J Physiol. 2005 Apr 15;564(Pt 2):515-22 [PMID: 15731188]
  26. Endocrinology. 2011 Mar;152(3):1001-12 [PMID: 21239443]
  27. Endocrinology. 1982 Nov;111(5):1737-9 [PMID: 6751801]
  28. Nature. 2002 Jul 4;418(6893):85-9 [PMID: 12097911]
  29. J Neurosci. 2009 Aug 5;29(31):9809-18 [PMID: 19657033]
  30. Nature. 2002 Oct 31;419(6910):947-52 [PMID: 12410316]
  31. Neuroendocrinology. 1995 Dec;62(6):619-27 [PMID: 8751288]
  32. Neuroscience. 1999;94(3):809-19 [PMID: 10579572]
  33. J Neurosci. 2013 Jul 31;33(31):12689-97 [PMID: 23904605]
  34. Neuroscience. 1998 May;84(1):177-91 [PMID: 9522372]
  35. Front Endocrinol (Lausanne). 2012 Nov 28;3:148 [PMID: 23233850]
  36. Endocrinology. 2012 Aug;153(8):3758-69 [PMID: 22719049]
  37. J Mol Cell Cardiol. 1995 Nov;27(11):2495-505 [PMID: 8596200]
  38. J Neurophysiol. 2013 May;109(9):2354-63 [PMID: 23390313]
  39. Endocrinology. 2002 Jun;143(6):2284-92 [PMID: 12021193]
  40. Endocrinology. 2007 Oct;148(10):4927-36 [PMID: 17595229]
  41. J Physiol. 2009 Apr 1;587(Pt 7):1401-11 [PMID: 19204051]
  42. J Physiol. 1996 Feb 1;490 ( Pt 3):713-27 [PMID: 8683470]
  43. J Neuroendocrinol. 2011 Jul;23(7):557-69 [PMID: 21518033]
  44. Mol Endocrinol. 2004 Jul;18(7):1808-17 [PMID: 15184526]
  45. Endocrinology. 1987 Jan;120(1):272-9 [PMID: 3096701]
  46. Nature. 2001 Jun 21;411(6840):957-62 [PMID: 11418861]
  47. Endocrinology. 2000 Jan;141(1):412-9 [PMID: 10614664]
  48. Endocrinology. 2012 Aug;153(8):3770-9 [PMID: 22691552]
  49. Curr Protoc Neurosci. 2002 May;Chapter 6:Unit 6.14 [PMID: 18428562]
  50. Nat Rev Neurosci. 2006 Feb;7(2):126-36 [PMID: 16429122]
  51. Endocrinology. 2008 Apr;149(4):1979-86 [PMID: 18162521]
  52. Cell Calcium. 2004 Jan;35(1):47-58 [PMID: 14670371]
  53. J Neuroendocrinol. 2010 Mar;22(3):188-95 [PMID: 20041983]
  54. Endocrinology. 2004 Feb;145(2):728-35 [PMID: 14576189]
  55. Endocrinology. 2010 Jan;151(1):291-300 [PMID: 19880809]
  56. J Neurosci. 2005 Jun 15;25(24):5740-9 [PMID: 15958740]
  57. Neurosci Lett. 2001 Mar 16;300(3):153-6 [PMID: 11226634]
  58. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):310-5 [PMID: 8990205]
  59. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2410-5 [PMID: 16467147]
  60. Endocrinology. 1994 Feb;134(2):858-68 [PMID: 7905410]
  61. Mol Cell Endocrinol. 2011 Oct 22;346(1-2):57-64 [PMID: 21807065]
  62. J Neurosci. 2012 Oct 17;32(42):14664-9 [PMID: 23077052]
  63. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4101-6 [PMID: 10097170]
  64. Mol Endocrinol. 2014 Jan;28(1):16-27 [PMID: 24295737]
  65. Endocrinology. 2008 May;149(5):2459-66 [PMID: 18218690]
  66. Trends Pharmacol Sci. 1998 Apr;19(4):131-5 [PMID: 9612087]
  67. Science. 1996 Aug 16;273(5277):956-9 [PMID: 8688080]
  68. Endocrinology. 2007 Dec;148(12):5752-60 [PMID: 17823266]
  69. Endocrinology. 2013 Nov;154(11):3984-9 [PMID: 23928373]
  70. Endocrinology. 2010 Jan;151(1):312-21 [PMID: 19966188]
  71. Neuroreport. 1996 Jan 31;7(2):543-7 [PMID: 8730825]
  72. J Neurosci. 2008 Aug 6;28(32):8003-13 [PMID: 18685025]

Grants

  1. P30 DK020572/NIDDK NIH HHS
  2. R01 HD034860/NICHD NIH HHS
  3. R01 HD34860/NICHD NIH HHS

MeSH Term

Animals
Calcium
Glycoproteins
Gonadotropin-Releasing Hormone
Green Fluorescent Proteins
Kisspeptins
Male
Median Eminence
Mice
Mice, Transgenic
Preoptic Area

Chemicals

Glycoproteins
Kisspeptins
gonadotropin inhibitor
Green Fluorescent Proteins
Gonadotropin-Releasing Hormone
Calcium

Word Cloud

Created with Highcharts 10.0.0GnRHreleaseMEPOAactioncalciumsecretionpotentialsintracellularkisspeptinrequiredhormonemedianeminenceprocessespreopticarearegulationmalemicepotentialinducedLocalblockadeinositolkisspeptin-inducedbroadkisspeptin-evokedgonadotropin-inhibitoryrequiresblockingthusneuronscentraloutputcontrolreproductionalsoexaminedregion-specificusingfast-scancyclicvoltammetrydetectbrainslicesadultBlockingendoplasmicreticulumreuptakeelevateevokesdependentLocallyappliedtriphospate-mediatedinhibitedcontrastblockedlocalapplicationAlthoughpharmacologically-increasedtriphosphate-mediatedinhibitKisspeptin-inducedsuppressedplasmamembraneCa2+channelssuggestsincreasedinfluxoutsidecellinteractionsamongstimulatewithoutinvolvingperisomaticregionsCouplinggenerationlikelyphysiologicallylabilemayvaryregionDifferential

Similar Articles

Cited By