Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium strains from different regions of Senegal.

Niokhor Bakhoum, Antoine Galiana, Christine Le Roux, Aboubacry Kane, Robin Duponnois, Fatou Ndoye, Dioumacor Fall, Kandioura Noba, Samba Ndao Sylla, Diégane Diouf
Author Information
  1. Niokhor Bakhoum: Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, BP 5005, Dakar, Senegal, niokhor.bakhoum@gmail.com.

Abstract

Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.

References

  1. Lett Appl Microbiol. 2008 Aug;47(2):85-97 [PMID: 18565139]
  2. Syst Appl Microbiol. 2012 May;35(3):156-64 [PMID: 22429391]
  3. Microbiol Mol Biol Rev. 2000 Mar;64(1):180-201 [PMID: 10704479]
  4. Lett Appl Microbiol. 2007 Apr;44(4):412-8 [PMID: 17397480]
  5. Appl Environ Microbiol. 1994 Jan;60(1):56-63 [PMID: 16349165]
  6. Syst Appl Microbiol. 2012 Sep;35(6):359-67 [PMID: 22817876]
  7. Int J Syst Evol Microbiol. 2012 Nov;62(Pt 11):2737-2742 [PMID: 22228663]
  8. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  9. Evolution. 1985 Jul;39(4):783-791 [PMID: 28561359]
  10. Appl Environ Microbiol. 1999 Feb;65(2):374-80 [PMID: 9925556]
  11. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  12. Syst Appl Microbiol. 2011 Apr;34(2):96-104 [PMID: 21306854]
  13. Microb Ecol. 2009 Nov;58(4):930-41 [PMID: 19468700]
  14. Syst Appl Microbiol. 2009 Sep;32(6):413-20 [PMID: 19477097]
  15. Microb Ecol. 2005 Aug;50(2):152-62 [PMID: 16184338]
  16. Syst Appl Microbiol. 2011 May;34(3):216-26 [PMID: 21194867]
  17. Int J Syst Evol Microbiol. 2005 Mar;55(Pt 2):569-575 [PMID: 15774626]
  18. Appl Environ Microbiol. 2007 Apr;73(8):2635-43 [PMID: 17308185]
  19. J Bacteriol. 2001 Jan;183(1):214-20 [PMID: 11114919]
  20. Mol Biol Evol. 2001 Jun;18(6):907-16 [PMID: 11371578]
  21. World J Microbiol Biotechnol. 2012 Jul;28(7):2567-79 [PMID: 22806163]
  22. Trends Microbiol. 2000 Sep;8(9):396-401 [PMID: 10989306]
  23. J Appl Microbiol. 2010 Mar;108(3):818-830 [PMID: 19735328]
  24. Mol Phylogenet Evol. 2004 Mar;30(3):720-32 [PMID: 15012950]
  25. Appl Environ Microbiol. 2002 Aug;68(8):4025-34 [PMID: 12147504]
  26. Microb Ecol. 2007 Oct;54(3):553-66 [PMID: 17406772]
  27. Microbiology (Reading). 2001 Apr;147(Pt 4):981-993 [PMID: 11283294]
  28. Mol Plant Microbe Interact. 1999 Apr;12(4):293-318 [PMID: 10188270]
  29. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  30. Arch Microbiol. 2006 Aug;186(2):87-97 [PMID: 16802175]
  31. FEMS Microbiol Ecol. 2008 Nov;66(2):391-400 [PMID: 18795953]
  32. Mol Biol Evol. 1999 Jan;16(1):98-113 [PMID: 10331255]
  33. FEMS Microbiol Ecol. 2005 Sep 1;54(1):1-11 [PMID: 16329967]
  34. J Bacteriol. 1995 Jan;177(2):468-72 [PMID: 7814339]
  35. Plant Physiol. 1968 Aug;43(8):1185-207 [PMID: 16656902]
  36. Mol Plant Microbe Interact. 1994 Sep-Oct;7(5):564-72 [PMID: 7949325]
  37. Mol Microbiol. 1997 Sep;25(5):811-7 [PMID: 9364907]

MeSH Term

Acacia
Acyltransferases
Bacterial Proteins
Mesorhizobium
Molecular Sequence Data
N-Acetylglucosaminyltransferases
Oxidoreductases
Phylogeny
Root Nodules, Plant
Senegal
Sequence Analysis, DNA
Symbiosis

Chemicals

Bacterial Proteins
Oxidoreductases
nitrogenase reductase
Acyltransferases
NodA protein, Rhizobiales
N-Acetylglucosaminyltransferases
NodC protein, Rhizobiales

Word Cloud

Created with Highcharts 10.0.0AcaciasenegalseyalsymbioticrhizobialstrainsgenesspeciesnitrogenfixationMesorhizobiumgenenodulationtreesSenegalPhylogenynifHnodAnodCsequencesdifferenttestsinoculationacetylenereductionactivitysmalldeciduouslegumehighlyvaluedproductiongumarabiccommodityinternationaltradesinceancienttimesSymbioticlegumesrepresentsmainnaturalinputatmosphericN2ecosystemsmayultimatelybenefitorganismsanalyzednodnifpropertiesroot-nodulatingbacteriaisolatedtwoclosedplurifariumgroupedseparatelyphylogeneticsimilarshowedidenticalcontrastexhibitedEfficiencydemonstratedsignificantlyaffectedtotaldryweightARAspecificSARAplantsHowevercross-inoculationshowspecificitytowardgivenhosttermsinfectivityefficiencystatedprincipalcomponentanalysisPCAstudydemonstrateslarge-scaleframeworkreafforestationprogramsrequirespreliminarystepstrainselectiondiversityLWilldDelregions

Similar Articles

Cited By (2)