The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration.

Xavier Bailly, Laurent Laguerre, Gaëlle Correc, Sam Dupont, Thomas Kurth, Anja Pfannkuchen, Rolf Entzeroth, Ian Probert, Serge Vinogradov, Christophe Lechauve, Marie-José Garet-Delmas, Heinrich Reichert, Volker Hartenstein
Author Information
  1. Xavier Bailly: Université Pierre et Marie Curie -CNRS, FR2424, Functional Exploration in Marine Model Organisms - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff Roscoff, France.
  2. Laurent Laguerre: Université Pierre et Marie Curie -CNRS, FR2424, Functional Exploration in Marine Model Organisms - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff Roscoff, France.
  3. Gaëlle Correc: Université Pierre et Marie Curie -CNRS, UMR 7139, Marine Plants and Biomolecules, Station Biologique de Roscoff Roscoff, France.
  4. Sam Dupont: Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences - Kristineberg, University of Gothenburg - Fiskebäckskil Sweden.
  5. Thomas Kurth: TU Dresden, DFG-Research Center for Regenerative Therapies Dresden Dresden, Germany.
  6. Anja Pfannkuchen: TU Dresden, DFG-Research Center for Regenerative Therapies Dresden Dresden, Germany.
  7. Rolf Entzeroth: Institute of Zoology, Technical University Dresden Dresden, Germany.
  8. Ian Probert: Université Pierre et Marie Curie -CNRS, FR2424, RCC (Roscoff Culture Collection) - Centre de Ressources Biologiques Marines, Station Biologique de Roscoff Roscoff, France.
  9. Serge Vinogradov: Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine Detroit, France.
  10. Christophe Lechauve: INSERM, UMR S 968, CNRS/Université Pierre et Marie Curie - Institut de la Vision/Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts Paris, France.
  11. Marie-José Garet-Delmas: CNRS UMR 7144 and Université Pierre and Marie Curie, EPEP - Evolution of Protists and Pelagic Ecosystems, Station Biologique de Roscoff Roscoff, France.
  12. Heinrich Reichert: Biozentrum, University of Basel Basel, Switzerland.
  13. Volker Hartenstein: Department of Molecular Cell and Developmental Biology, University of California Los Angeles, CA, USA.

Abstract

A remarkable example of biological engineering is the capability of some marine animals to take advantage of photosynthesis by hosting symbiotic algae. This capacity, referred to as photosymbiosis, is based on structural and functional complexes that involve two distantly unrelated organisms. These stable photosymbiotic associations between metazoans and photosynthetic protists play fundamental roles in marine ecology as exemplified by reef communities and their vulnerability to global changes threats. Here we introduce a photosymbiotic tidal acoel flatworm, Symsagittifera roscoffensis, and its obligatory green algal photosymbiont, Tetraselmis convolutae (Lack of the algal partner invariably results in acoel lethality emphasizing the mandatory nature of the photosymbiotic algae for the animal's survival). Together they form a composite photosymbiotic unit, which can be reared in controlled conditions that provide easy access to key life-cycle events ranging from early embryogenesis through the induction of photosymbiosis in aposymbiotic juveniles to the emergence of a functional "solar-powered" mature stage. Since it is possible to grow both algae and host under precisely controlled culture conditions, it is now possible to design a range of new experimental protocols that address the mechanisms and evolution of photosymbiosis. S. roscoffensis thus represents an emerging model system with experimental advantages that complement those of other photosymbiotic species, in particular corals. The basal taxonomic position of S. roscoffensis (and acoels in general) also makes it a relevant model for evolutionary studies of development, stem cell biology and regeneration. Finally, it's autotrophic lifestyle and lack of calcification make S. roscoffensis a favorable system to study the role of symbiosis in the response of marine organisms to climate change (e.g., ocean warming and acidification). In this article we summarize the state of knowledge of the biology of S. roscoffensis and its algal partner from studies dating back over a century, and provide an overview of ongoing research efforts that take advantage of this unique system.

Keywords

References

  1. Science. 1999 Mar 19;283(5409):1919-23 [PMID: 10082465]
  2. Zh Evol Biokhim Fiziol. 2008 Jan-Feb;44(1):83-93 [PMID: 18411518]
  3. PLoS One. 2007 Aug 08;2(8):e717 [PMID: 17684563]
  4. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11246-51 [PMID: 12177440]
  5. PLoS One. 2009;4(5):e5502 [PMID: 19430533]
  6. Trends Neurosci. 2006 Feb;29(2):82-90 [PMID: 16377000]
  7. Bioessays. 2011 Mar;33(3):165-72 [PMID: 21254149]
  8. Plant Cell Environ. 2008 May;31(5):679-94 [PMID: 18315536]
  9. Mol Phylogenet Evol. 2004 Nov;33(2):321-32 [PMID: 15336667]
  10. Tissue Cell. 1998 Feb;30(1):57-63 [PMID: 9569678]
  11. Nat Rev Genet. 2005 Dec;6(12):881-92 [PMID: 16341069]
  12. Nature. 2008 Apr 10;452(7188):745-9 [PMID: 18322464]
  13. Wilhelm Roux Arch Entwickl Mech Org. 1967 Sep;159(3):298-313 [PMID: 28304498]
  14. J Phycol. 1966 Sep;2(3):105-11 [PMID: 27053412]
  15. Evol Dev. 2008 Mar-Apr;10(2):135-40 [PMID: 18315806]
  16. Mar Pollut Bull. 2013 Oct 15;75(1-2):150-156 [PMID: 23948093]
  17. PLoS One. 2012;7(6):e38011 [PMID: 22723842]
  18. Dev Genes Evol. 2007 Feb;217(2):89-104 [PMID: 17146688]
  19. Wilhelm Roux Arch Entwickl Mech Org. 1963 Jul;154(4):308-353 [PMID: 28355027]
  20. Biochim Biophys Acta. 1979 Jun 21;573(3):464-80 [PMID: 465514]
  21. Proc Biol Sci. 2003 May 22;270(1519):1077-83 [PMID: 12803898]
  22. PLoS One. 2012;7(1):e29568 [PMID: 22253736]
  23. Nature. 2013 Jun 27;498(7455):429 [PMID: 23803827]
  24. Nature. 2011 Feb 10;470(7333):255-8 [PMID: 21307940]
  25. Nature. 2013 Oct 31;502(7473):677-80 [PMID: 24153189]
  26. J Exp Zool. 1971 Jan;176(1):97-105 [PMID: 5101846]
  27. Evol Dev. 2007 Sep-Oct;9(5):409-15 [PMID: 17845513]
  28. Proc R Soc Lond B Biol Sci. 1974 Jul 30;186(1085):357-68 [PMID: 4154446]
  29. Dev Growth Differ. 2010 Oct;52(8):701-13 [PMID: 20874714]
  30. Mol Phylogenet Evol. 2002 Sep;24(3):345-57 [PMID: 12220976]
  31. Evol Dev. 2004 May-Jun;6(3):154-63 [PMID: 15099302]
  32. Dev Biol. 2000 Apr 15;220(2):285-95 [PMID: 10753516]
  33. J Biol. 2010;9(2):14 [PMID: 20236484]
  34. J Exp Bot. 2008;59(5):1069-80 [PMID: 18267943]
  35. Curr Biol. 2004 Sep 21;14(18):1644-9 [PMID: 15380066]
  36. Dev Genes Evol. 2010 Sep;220(3-4):61-76 [PMID: 20549514]
  37. Evol Dev. 2003 Jul-Aug;5(4):372-8 [PMID: 12823453]
  38. Proc Biol Sci. 2009 Dec 22;276(1677):4261-70 [PMID: 19759036]
  39. Glia. 2011 Sep;59(9):1215-36 [PMID: 21584869]
  40. PLoS One. 2008 Jul 02;3(7):e2603 [PMID: 18596972]
  41. Aquat Toxicol. 2012 Apr;110-111:194-207 [PMID: 22343465]
  42. J Biol Chem. 2013 Mar 8;288(10):6957-67 [PMID: 23288852]
  43. Int J Dev Biol. 2006;50(8):675-9 [PMID: 17051477]
  44. Bioessays. 2004 Oct;26(10):1046-57 [PMID: 15382134]
  45. Genome Biol. 2005;6(1):303 [PMID: 15642111]

Grants

  1. R01 NS054814/NINDS NIH HHS