Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa.

Nina A Lehr, Zheng Wang, Ning Li, David A Hewitt, Francesc López-Giráldez, Frances Trail, Jeffrey P Townsend
Author Information
  1. Nina A Lehr: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America.
  2. Zheng Wang: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America; Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America.
  3. Ning Li: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America.
  4. David A Hewitt: Department of Botany, Academy of Natural Sciences, Philadelphia, Pennsylvania, United States of America; Wagner Free Institute of Science, Philadelphia, Pennsylvania, United States of America.
  5. Francesc López-Giráldez: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America.
  6. Frances Trail: Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America.
  7. Jeffrey P Townsend: Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America; Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America; Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America; Program in Microbiology, Yale University, New Haven, Connecticut, United States of America.

Abstract

Many fungi form complex three-dimensional fruiting bodies, within which the meiotic machinery for sexual spore production has been considered to be largely conserved over evolutionary time. Indeed, much of what we know about meiosis in plant and animal taxa has been deeply informed by studies of meiosis in Saccharomyces and Neurospora. Nevertheless, the genetic basis of fruiting body development and its regulation in relation to meiosis in fungi is barely known, even within the best studied multicellular fungal model Neurospora crassa. We characterized morphological development and genome-wide transcriptomics in the closely related species Neurospora crassa, Neurospora tetrasperma, and Neurospora discreta, across eight stages of sexual development. Despite diverse life histories within the genus, all three species produce vase-shaped perithecia. Transcriptome sequencing provided gene expression levels of orthologous genes among all three species. Expression of key meiosis genes and sporulation genes corresponded to known phenotypic and developmental differences among these Neurospora species during sexual development. We assembled a list of genes putatively relevant to the recent evolution of fruiting body development by sorting genes whose relative expression across developmental stages increased more in N. crassa relative to the other species. Then, in N. crassa, we characterized the phenotypes of fruiting bodies arising from crosses of homozygous knockout strains of the top genes. Eight N. crassa genes were found to be critical for the successful formation of perithecia. The absence of these genes in these crosses resulted in either no perithecium formation or in arrested development at an early stage. Our results provide insight into the genetic basis of Neurospora sexual reproduction, which is also of great importance with regard to other multicellular ascomycetes, including perithecium-forming pathogens, such as Claviceps purpurea, Ophiostoma ulmi, and Glomerella graminicola.

Associated Data

GEO | GSE41484; GSE60255; GSE60256

References

  1. Microbiol Mol Biol Rev. 2004 Mar;68(1):1-108 [PMID: 15007097]
  2. Genetics. 1980 Oct;96(2):367-78 [PMID: 6455324]
  3. Proc Biol Sci. 2013 Jun 19;280(1764):20130862 [PMID: 23782882]
  4. Annu Rev Genet. 1997;31:245-76 [PMID: 9442896]
  5. Adv Genet. 2007;57:49-96 [PMID: 17352902]
  6. Genetics. 1985 Dec;111(4):759-77 [PMID: 2933298]
  7. Fungal Genet Biol. 2012 Jul;49(7):533-43 [PMID: 22626843]
  8. J Biol Rhythms. 2004 Oct;19(5):414-24 [PMID: 15534321]
  9. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5592-7 [PMID: 10318929]
  10. J Biosci. 2010 Mar;35(1):119-26 [PMID: 20413916]
  11. Fungal Genet Biol. 2011 Jul;48(7):661-7 [PMID: 21362492]
  12. Proc Natl Acad Sci U S A. 1941 Nov 15;27(11):499-506 [PMID: 16588492]
  13. J Evol Biol. 2010 Aug;23(8):1642-56 [PMID: 20546092]
  14. PLoS Genet. 2013;9(7):e1003642 [PMID: 23935511]
  15. Mol Genet Genomics. 2005 Apr;273(2):137-49 [PMID: 15778868]
  16. J Bacteriol. 1975 Jun;122(3):1239-46 [PMID: 125266]
  17. PLoS Pathog. 2011 Oct;7(10):e1002310 [PMID: 22028654]
  18. Eukaryot Cell. 2011 Aug;10(8):1100-9 [PMID: 21666072]
  19. Eur J Cell Biol. 1980 Dec;23(1):208-23 [PMID: 6450683]
  20. Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 [PMID: 15486203]
  21. Mol Phylogenet Evol. 2011 Jun;59(3):649-63 [PMID: 21439389]
  22. Eukaryot Cell. 2010 Jun;9(6):894-905 [PMID: 20435701]
  23. Fungal Genet Biol. 2007 Dec;44(12):1219-30 [PMID: 17517525]
  24. Mol Microbiol. 2013 Dec;90(5):1125-45 [PMID: 24279728]
  25. Arch Microbiol. 1999 Sep;172(3):157-66 [PMID: 10460886]
  26. Proc Natl Acad Sci U S A. 2007 May 8;104(19):8089-94 [PMID: 17470786]
  27. PLoS Genet. 2013;9(8):e1003669 [PMID: 23935534]
  28. Genetics. 2012 Apr;190(4):1389-404 [PMID: 22298702]
  29. Eukaryot Cell. 2014 Jan;13(1):154-69 [PMID: 24243796]
  30. Curr Biol. 2007 Aug 21;17(16):1384-9 [PMID: 17669651]
  31. Genetics. 1979 Aug;92(4):1107-20 [PMID: 17248941]
  32. BMC Bioinformatics. 2007 Apr 10;8:120 [PMID: 17425803]
  33. Fungal Genet Biol. 2007 Nov;44(11):1146-56 [PMID: 17555994]
  34. Bioinformatics. 2010 Aug 1;26(15):1918-9 [PMID: 20538728]
  35. Microbiol Mol Biol Rev. 1997 Dec;61(4):411-28 [PMID: 9409146]
  36. Evolution. 2003 Dec;57(12):2703-20 [PMID: 14761051]
  37. Mol Gen Genet. 2000 Jun;263(5):867-76 [PMID: 10905354]
  38. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10352-10357 [PMID: 16801547]
  39. Fungal Genet Biol. 2010 Oct;47(10):869-78 [PMID: 20601044]
  40. Bioessays. 2008 Aug;30(8):711-4 [PMID: 18623067]
  41. Dev Genet. 1994;15(1):104-18 [PMID: 8187347]
  42. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  43. Bioessays. 1990 Feb;12(2):53-9 [PMID: 2140508]
  44. Fungal Genet Biol. 2012 May;49(5):405-13 [PMID: 22469835]
  45. Fungal Genet Biol. 2010 Mar;47(3):199-204 [PMID: 20025988]
  46. Mol Microbiol. 2007 May;64(4):873-6 [PMID: 17501912]
  47. PLoS One. 2012;7(5):e37488 [PMID: 22662159]
  48. Genetics. 1996 Sep;144(1):71-86 [PMID: 8878674]
  49. PLoS Genet. 2009 Aug;5(8):e1000618 [PMID: 19714214]
  50. Nature. 2003 Apr 24;422(6934):859-68 [PMID: 12712197]
  51. Nucleic Acids Res. 2012 Jan;40(Database issue):D26-32 [PMID: 22110030]
  52. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  53. Naturwissenschaften. 2000 Aug;87(8):335-42 [PMID: 11013884]

Grants

  1. UL1 TR000142/NCATS NIH HHS

MeSH Term

Cinnamates
Drug Resistance, Fungal
Fruiting Bodies, Fungal
Fungal Proteins
Gene Expression Regulation, Fungal
Gene Knockout Techniques
Hygromycin B
Mutation
Neurospora crassa
Phenotype
Protein Transport
Reproduction
Species Specificity
Time Factors
Transcription, Genetic

Chemicals

Cinnamates
Fungal Proteins
Hygromycin B
hygromycin A

Word Cloud

Created with Highcharts 10.0.0NeurosporagenesdevelopmentcrassaspeciessexualfruitingmeiosiswithinthreeexpressionamongNfungibodiesgeneticbasisbodyknownmulticellularcharacterizedacrossstagesperitheciadevelopmentaldifferencesrelativecrossesformationreproductionManyformcomplexthree-dimensionalmeioticmachinerysporeproductionconsideredlargelyconservedevolutionarytimeIndeedmuchknowplantanimaltaxadeeplyinformedstudiesSaccharomycesNeverthelessregulationrelationbarelyevenbeststudiedfungalmodelmorphologicalgenome-widetranscriptomicscloselyrelatedtetraspermadiscretaeightDespitediverselifehistoriesgenusproducevase-shapedTranscriptomesequencingprovidedgenelevelsorthologousExpressionkeysporulationcorrespondedphenotypicassembledlistputativelyrelevantrecentevolutionsortingwhoseincreasedphenotypesarisinghomozygousknockoutstrainstopEightfoundcriticalsuccessfulabsenceresultedeitherperitheciumarrestedearlystageresultsprovideinsightalsogreatimportanceregardascomycetesincludingperithecium-formingpathogensClavicepspurpureaOphiostomaulmiGlomerellagraminicolaGenerevealrequired

Similar Articles

Cited By