Dynamic evolution of the GnRH receptor gene family in vertebrates.

Barry L Williams, Yasuhisa Akazome, Yoshitaka Oka, Heather L Eisthen
Author Information

Abstract

BACKGROUND: Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor. The evolutionary history of the receptor family, including ancestral copy number and timing of duplications and deletions, has been the subject of controversy.
RESULTS: We report here for the first time sequences of three distinct GnRH receptor genes in salamanders (axolotls, Ambystoma mexicanum), which are orthologous to three GnRH receptors from ranid frogs. To understand the origin of these genes within the larger evolutionary context of the gene family, we performed phylogenetic analyses and probabilistic protein homology searches of GnRH receptor genes in vertebrates and their near relatives. Our analyses revealed four points that alter previous views about the evolution of the GnRH receptor gene family. First, the "mammalian" pituitary type GnRH receptor, which is the sole GnRH receptor in humans and previously presumed to be highly derived because it lacks the cytoplasmic C-terminal domain typical of most G-protein coupled receptors, is actually an ancient gene that originated in the common ancestor of jawed vertebrates (Gnathostomata). Second, unlike previous studies, we classify vertebrate GnRH receptors into five subfamilies. Third, the order of subfamily origins is the inverse of previous proposed models. Fourth, the number of GnRH receptor genes has been dynamic in vertebrates and their ancestors, with multiple duplications and losses.
CONCLUSION: Our results provide a novel evolutionary framework for generating hypotheses concerning the functional importance of structural characteristics of vertebrate GnRH receptors. We show that five subfamilies of vertebrate GnRH receptors evolved early in the vertebrate phylogeny, followed by several independent instances of gene loss. Chief among cases of gene loss are humans, best described as degenerate with respect to GnRH receptors because we retain only a single, ancient gene.

References

  1. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  2. J Endocrinol. 1999 Jul;162(1):117-26 [PMID: 10396028]
  3. Gen Comp Endocrinol. 2011 Jan 1;170(1):68-78 [PMID: 21036176]
  4. J Endocrinol. 1998 Mar;156(3):R9-12 [PMID: 9582516]
  5. Syst Biol. 2002 Jun;51(3):492-508 [PMID: 12079646]
  6. Gen Comp Endocrinol. 1998 Dec;112(3):296-302 [PMID: 9843635]
  7. Genetics. 2011 Aug;188(4):799-808 [PMID: 21828280]
  8. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  9. Mol Cell Endocrinol. 1999 May 25;151(1-2):129-36 [PMID: 10411327]
  10. PLoS Biol. 2010;8(9). pii: e1000475. doi: 10.1371/journal.pbio.1000475 [PMID: 20838655]
  11. Genome Biol. 2013;14(3):R28 [PMID: 23537068]
  12. Endocrinology. 2010 Mar;151(3):1142-52 [PMID: 20068010]
  13. Endocrinology. 2009 Jun;150(6):2847-56 [PMID: 19264870]
  14. J Biol Chem. 1998 May 8;273(19):11472-7 [PMID: 9565559]
  15. Endocrinology. 2003 Sep;144(9):3860-71 [PMID: 12933659]
  16. Bioinformatics. 2003 Aug 12;19(12):1572-4 [PMID: 12912839]
  17. Gen Comp Endocrinol. 1985 Aug;59(2):308-15 [PMID: 3926604]
  18. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  19. Endocr Rev. 2004 Apr;25(2):235-75 [PMID: 15082521]
  20. Mol Biol Evol. 2012 Feb;29(2):457-72 [PMID: 21873298]
  21. J Endocrinol. 2002 Apr;173(1):1-11 [PMID: 11927379]
  22. Annu Rev Entomol. 2010;55:189-206 [PMID: 19961329]
  23. Nature. 2004 Dec 9;432(7018):695-716 [PMID: 15592404]
  24. Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8 [PMID: 18039703]
  25. Nature. 2010 Apr 1;464(7289):757-62 [PMID: 20360741]
  26. Endocrinology. 2005 Sep;146(9):4061-73 [PMID: 15961566]
  27. J Neurosci. 2000 Jun 1;20(11):3947-55 [PMID: 10818129]
  28. Nature. 2013 Sep 12;501(7466):263-8 [PMID: 24025842]
  29. J Biol Chem. 2010 Apr 2;285(14):10736-47 [PMID: 20068045]
  30. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):361-6 [PMID: 11120886]
  31. Trends Endocrinol Metab. 2006 Oct;17(8):308-13 [PMID: 16919966]
  32. Science. 2006 Nov 10;314(5801):941-52 [PMID: 17095691]
  33. Nat Genet. 2013 Apr;45(4):415-21, 421e1-2 [PMID: 23435085]
  34. PLoS One. 2012;7(7):e41955 [PMID: 22848672]
  35. PLoS One. 2014;9(2):e87901 [PMID: 24498396]
  36. Br J Pharmacol. 2010 Feb;159(4):751-60 [PMID: 19888967]
  37. Mol Pharmacol. 1999 Dec;56(6):1229-37 [PMID: 10570050]
  38. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16044-9 [PMID: 24043829]
  39. Biol Reprod. 1983 Nov;29(4):863-71 [PMID: 6416318]
  40. Endocrinology. 2000 May;141(5):1764-71 [PMID: 10803587]
  41. Mol Endocrinol. 2005 Mar;19(3):722-31 [PMID: 15563546]
  42. BMC Bioinformatics. 2004 Jan 21;5:7 [PMID: 14736340]
  43. Front Endocrinol (Lausanne). 2012 Nov 19;3:140 [PMID: 23181055]
  44. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37 [PMID: 21593126]
  45. Gen Comp Endocrinol. 1986 Aug;63(2):236-44 [PMID: 3096814]
  46. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1139-44 [PMID: 7916600]
  47. Mol Endocrinol. 2004 Jan;18(1):105-16 [PMID: 14525953]
  48. Endocrinology. 2000 Dec;141(12):4564-75 [PMID: 11108269]
  49. Nucleic Acids Res. 2004;32(5):1792-7 [PMID: 15034147]
  50. Science. 1998 Nov 27;282(5394):1711-4 [PMID: 9831563]
  51. Mol Pharmacol. 2008 Jan;73(1):75-81 [PMID: 17942747]
  52. J Neurophysiol. 2003 Aug;90(2):731-8 [PMID: 12672784]
  53. J Biol Chem. 2001 Oct 26;276(43):39685-94 [PMID: 11495905]
  54. Mol Cells. 2002 Aug 31;14(1):101-7 [PMID: 12243338]
  55. Mol Cell Endocrinol. 2005 Oct 20;242(1-2):67-79 [PMID: 16122867]
  56. J Mol Endocrinol. 2007 Feb;38(1-2):289-304 [PMID: 17293447]
  57. Nucleic Acids Res. 2013 Jan;41(Database issue):D700-5 [PMID: 23193262]
  58. Brain Res Mol Brain Res. 1989 Dec;6(4):311-26 [PMID: 2687610]
  59. Syst Biol. 2013 Sep;62(5):660-73 [PMID: 23628960]
  60. Nature. 1989 Mar 9;338(6211):161-4 [PMID: 2645530]
  61. Mol Endocrinol. 1992 Jul;6(7):1163-9 [PMID: 1324422]
  62. BMC Evol Biol. 2005;5:8 [PMID: 15676079]
  63. Biochem Biophys Res Commun. 1997 Sep 18;238(2):517-22 [PMID: 9299543]
  64. Gen Comp Endocrinol. 2011 Mar 1;171(1):1-16 [PMID: 21185290]
  65. Endocrinology. 2008 Mar;149(3):1415-22 [PMID: 18039780]
  66. Bioinformatics. 2001 Sep;17(9):849-50 [PMID: 11590105]
  67. BMC Evol Biol. 2013;13:238 [PMID: 24180662]
  68. Mol Endocrinol. 1998 Feb;12(2):161-71 [PMID: 9482659]
  69. Gen Comp Endocrinol. 2005 May 15;142(1-2):67-73 [PMID: 15862550]
  70. Anim Reprod Sci. 2005 Aug;88(1-2):5-28 [PMID: 16140177]
  71. J Biol Chem. 1992 Oct 25;267(30):21281-4 [PMID: 1328228]
  72. Proteomics. 2004 Jun;4(6):1633-49 [PMID: 15174133]
  73. Front Neuroendocrinol. 2008 Jan;29(1):17-35 [PMID: 17976709]
  74. Biochem J. 1994 Jun 1;300 ( Pt 2):299-302 [PMID: 8002931]
  75. J Pediatr Endocrinol Metab. 1999 Apr;12 Suppl 1:267-75 [PMID: 10698591]
  76. Bioinformatics. 2007 Nov 1;23(21):2947-8 [PMID: 17846036]
  77. J Biol Chem. 1999 Oct 15;274(42):30146-53 [PMID: 10514504]

Grants

  1. R01 DC005366/NIDCD NIH HHS

MeSH Term

Ambystoma mexicanum
Amino Acid Sequence
Amphibian Proteins
Animals
Base Sequence
Evolution, Molecular
Gonadotropin-Releasing Hormone
Molecular Sequence Data
Phylogeny
Receptors, LHRH
Sequence Alignment
Vertebrates

Chemicals

Amphibian Proteins
Receptors, LHRH
Gonadotropin-Releasing Hormone

Word Cloud

Created with Highcharts 10.0.0GnRHreceptorreceptorsgenegenesevolutionaryvertebratesfamilyvertebratepreviousmodelsmultiplenumberduplicationsthreeanalysesevolutionhumansancientfivesubfamilieslossBACKGROUND:ElucidatingmechanismsunderlyingcoevolutionligandsimportantchallengemolecularbiologyPeptidehormonesexcellenteffortsgivenrelativeeaseexaminingchangesencodingmoleculespossessdecapeptidegonadotropinreleasinghormonehistoryincludingancestralcopytimingdeletionssubjectcontroversyRESULTS:reportfirsttimesequencesdistinctsalamandersaxolotlsAmbystomamexicanumorthologousranidfrogsunderstandoriginwithinlargercontextperformedphylogeneticprobabilisticproteinhomologysearchesnearrelativesrevealedfourpointsalterviewsFirst"mammalian"pituitarytypesolepreviouslypresumedhighlyderivedlackscytoplasmicC-terminaldomaintypicalG-proteincoupledactuallyoriginatedcommonancestorjawedGnathostomataSecondunlikestudiesclassifyThirdordersubfamilyoriginsinverseproposedFourthdynamicancestorslossesCONCLUSION:resultsprovidenovelframeworkgeneratinghypothesesconcerningfunctionalimportancestructuralcharacteristicsshowevolvedearlyphylogenyfollowedseveralindependentinstancesChiefamongcasesbestdescribeddegeneraterespectretainsingleDynamic

Similar Articles

Cited By