D-AKAP2:PKA RII:PDZK1 ternary complex structure: insights from the nucleation of a polyvalent scaffold.

Ganapathy N Sarma, Issa S Moody, Ronit Ilouz, Ryan H Phan, Banumathi Sankaran, Randy A Hall, Susan S Taylor
Author Information
  1. Ganapathy N Sarma: Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0654; Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093-0654.

Abstract

A-kinase anchoring proteins (AKAPs) regulate cAMP-dependent protein kinase (PKA) signaling in space and time. Dual-specific AKAP2 (D-AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D-AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α-helix to PKA and a β-strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D-AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D-AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C-terminus of D-AKAP2, which contains two binding motifs-the D-AKAP2AKB and the PDZ motif-that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D-AKAP2AKB binds to the D/D domain of the R-subunit and the C-terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D-AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.

Keywords

References

  1. Biol Reprod. 2000 Aug;63(2):607-11 [PMID: 10906071]
  2. Nat Genet. 2000 Sep;26(1):89-92 [PMID: 10973256]
  3. J Clin Invest. 2000 Sep;106(5):R31-8 [PMID: 10974026]
  4. Nat Rev Mol Cell Biol. 2001 Feb;2(2):107-17 [PMID: 11252952]
  5. EMBO J. 2001 Apr 2;20(7):1651-62 [PMID: 11285229]
  6. Genome Biol. 2001;2(5):REVIEWS3007 [PMID: 11387043]
  7. Mol Cell Biol. 2003 Feb;23(4):1175-80 [PMID: 12556478]
  8. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4072-7 [PMID: 12646696]
  9. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4445-50 [PMID: 12672969]
  10. Biochemistry. 2003 May 20;42(19):5754-63 [PMID: 12741833]
  11. J Biol Chem. 2003 Aug 1;278(31):28528-32 [PMID: 12754212]
  12. Mol Biol Rep. 2003 Jun;30(2):69-82 [PMID: 12841577]
  13. J Mol Biol. 2003 Jul 25;330(5):1117-29 [PMID: 12860132]
  14. Kidney Int. 2003 Nov;64(5):1746-54 [PMID: 14531807]
  15. Life Sci. 2003 Dec 5;74(2-3):225-35 [PMID: 14607250]
  16. Acta Biochim Pol. 2003;50(4):985-1017 [PMID: 14739991]
  17. Nat Rev Mol Cell Biol. 2004 Dec;5(12):959-70 [PMID: 15573134]
  18. Curr Opin Lipidol. 2005 Apr;16(2):147-52 [PMID: 15767854]
  19. Biochim Biophys Acta. 2005 Dec 30;1754(1-2):25-37 [PMID: 16214430]
  20. Protein Sci. 2005 Dec;14(12):2982-92 [PMID: 16260760]
  21. J Biol Chem. 2006 Feb 3;281(5):2820-7 [PMID: 16316992]
  22. J Biol Chem. 2006 Jul 28;281(30):21535-45 [PMID: 16728392]
  23. Mol Cell. 2006 Nov 3;24(3):383-95 [PMID: 17081989]
  24. Mol Cell. 2006 Nov 3;24(3):397-408 [PMID: 17081990]
  25. J Biol Chem. 2009 Nov 20;284(47):32869-80 [PMID: 19797056]
  26. Science. 2009 Nov 27;326(5957):1220-4 [PMID: 19965465]
  27. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  28. Structure. 2010 Feb 10;18(2):155-66 [PMID: 20159461]
  29. Nature. 2010 Apr 22;464(7292):1218-22 [PMID: 20376006]
  30. Cell Commun Signal. 2010 May 28;8:8 [PMID: 20509869]
  31. J Biol Chem. 2010 Nov 5;285(45):34999-5010 [PMID: 20739281]
  32. J Biol Chem. 2011 Jul 15;286(28):25171-86 [PMID: 21602281]
  33. J Biol Chem. 2012 Dec 21;287(52):43789-97 [PMID: 23115245]
  34. Methods Enzymol. 1997;276:307-26 [PMID: 27754618]
  35. J Mol Biol. 1968 Apr 28;33(2):491-7 [PMID: 5700707]
  36. J Mol Biol. 1994 Mar 11;236(5):1356-68 [PMID: 8126725]
  37. J Biol Chem. 1997 Feb 14;272(7):3993-8 [PMID: 9020105]
  38. J Biol Chem. 1997 Mar 21;272(12):8057-64 [PMID: 9065479]
  39. Front Biosci. 1997 Jul 01;2:d331-42 [PMID: 9236186]
  40. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11184-9 [PMID: 9326583]
  41. J Biol Chem. 1998 Dec 25;273(52):35048-55 [PMID: 9857038]

Grants

  1. P01 DK054441/NIDDK NIH HHS
  2. R01 GM034921/NIGMS NIH HHS
  3. DK054441/NIDDK NIH HHS
  4. GM34921/NIGMS NIH HHS

MeSH Term

A Kinase Anchor Proteins
Amino Acid Sequence
Animals
Carrier Proteins
Crystallography, X-Ray
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
Humans
Membrane Proteins
Models, Molecular
Molecular Sequence Data
PDZ Domains
Protein Conformation
Rats

Chemicals

A Kinase Anchor Proteins
AKAP10 protein, human
Carrier Proteins
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
Membrane Proteins
PDZK1 protein, human
Prkar1a protein, rat

Word Cloud

Created with Highcharts 10.0.0PKAD-AKAP2proteinssignalingPDZstructuretwoPDZK1proteinbindsdomaincomplexbindingA-kinaseanchoringAKAPshighaffinitytransporterspolyvalentscaffoldimportantinteractionD-AKAP2AKBinsightsregulatecAMP-dependentkinasespacetimeDual-specificAKAP2D-AKAP2/AKAP10RIRIIregulatorysubunitsanchoreddescribeinteractingpartnersexactmechanismsegmentdisorderedpresentsα-helixβ-strandmotifsnucleateshowlinkedregulationFormationD-AKAP2:binaryfirststeprevealscluestowardunderstandingphenomenoncontrastmanyinteractdirectlymembraneInsteadfacilitatedC-terminuscontainsmotifs-themotif-thatjoinedshortlinkerbecomeordereduponrespectivepartnerD/DR-subunitC-terminalmotifservesbridgingtransporteralsoprovidesfundamentalquestionexhibitdifferentialmodeisoformsD-AKAP2:PKARII:PDZK1ternarystructure:nucleationAKAP10specificitycrystal

Similar Articles

Cited By