Gene duplication and the environmental regulation of physiology and development.

David C Gibbs, Kathleen Donohue
Author Information
  1. David C Gibbs: Department of Biology, Duke University Box 90338, Durham, North Carolina, 27708.
  2. Kathleen Donohue: Department of Biology, Duke University Box 90338, Durham, North Carolina, 27708.

Abstract

When different life stages have different environmental tolerances, development needs to be regulated so that each life stage experiences environmental conditions that are suitable for it, if fitness is to be maintained. Restricting the timing of developmental transitions to occur under specific combinations of environmental conditions is therefore adaptively important. However, impeding development can itself incur demographic and fitness costs. How do organisms regulate development and physiological processes so that they occur under the broadest range of permissive conditions? Gene duplication offers one solution: Multiple genes contribute to the same downstream process, but do so under distinct combinations of environmental conditions. We present a simple model to examine how environmental sensitivities of genes and how gene duplication influence the distribution of environmental conditions under which an end process will proceed. The model shows that the duplication of genes that retain their downstream function but diverge in environmental sensitivities can allow an end process to proceed under more than one distinct combination of environmental conditions. The outcomes depend on how upstream genes regulate downstream components, which genes in the pathway have diversified in their sensitivities, and the structure of the pathway.

Keywords

References

  1. New Phytol. 2008;177(2):367-379 [PMID: 18028293]
  2. Zoolog Sci. 2011 Dec;28(12):875-81 [PMID: 22132784]
  3. Plant Physiol. 2001 Feb;125(2):1036-44 [PMID: 11161059]
  4. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1139-43 [PMID: 2300574]
  5. Genes Dev. 1989 Nov;3(11):1745-57 [PMID: 2606345]
  6. Nature. 2003 Jan 2;421(6918):37-42 [PMID: 12511946]
  7. FEBS Lett. 2000 Mar 24;470(2):107-12 [PMID: 10734217]
  8. Annu Rev Plant Biol. 2008;59:225-51 [PMID: 18173378]
  9. Trends Genet. 2010 Oct;26(10):425-30 [PMID: 20708291]
  10. Curr Biol. 2007 Oct 9;17(19):1669-74 [PMID: 17825563]
  11. Mol Ecol. 2008 Jan;17(1):157-66 [PMID: 17850269]
  12. Microb Biotechnol. 2013 Sep;6(5):526-39 [PMID: 23332010]
  13. Evol Dev. 2008 May-Jun;10(3):360-74 [PMID: 18460097]
  14. Evolution. 2005 Apr;59(4):758-70 [PMID: 15926687]
  15. J Plant Res. 1997 Mar;110(1):151-61 [PMID: 27520055]
  16. New Phytol. 2007;174(4):735-741 [PMID: 17504457]
  17. Plant J. 2006 Mar;45(5):804-18 [PMID: 16460513]
  18. Plant Cell. 2004 Feb;16(2):367-78 [PMID: 14729916]
  19. Plant Physiol. 1997 Nov;115(3):959-69 [PMID: 9390432]
  20. Plant Physiol. 2002 Sep;130(1):442-56 [PMID: 12226523]
  21. Plant Physiol. 2008 Oct;148(2):993-1003 [PMID: 18715958]
  22. Trends Genet. 1997 Nov;13(11):432-3 [PMID: 9385839]
  23. Plant Physiol. 1997 Aug;114(4):1487-92 [PMID: 9276958]
  24. Plant Mol Biol. 1994 Jun;25(3):413-27 [PMID: 8049367]
  25. Plant J. 1995 Mar;7(3):413-27 [PMID: 7757114]
  26. New Phytol. 1998 Nov;140(3):363-383 [PMID: 33862874]
  27. Ann Bot. 2003 Jan;91(1):21-9 [PMID: 12495916]
  28. J Theor Biol. 1966 Sep;12(1):119-29 [PMID: 6015423]
  29. Chromosome Res. 2009;17(5):699-717 [PMID: 19802709]
  30. Ann Bot. 2006 Dec;98(6):1233-40 [PMID: 17056614]
  31. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129-33 [PMID: 8755615]
  32. Photochem Photobiol. 1977 Aug;26(2):201-14 [PMID: 905365]
  33. Plant Cell Physiol. 2000 Mar;41(3):251-7 [PMID: 10805587]
  34. J Evol Biol. 2011 Jun;24(6):1284-97 [PMID: 21443645]
  35. Plant Physiol. 1994 Feb;104(2):363-371 [PMID: 12232088]
  36. Genetics. 1981 Mar-Apr;97(3-4):639-66 [PMID: 7297851]
  37. Trends Genet. 2005 Nov;21(11):602-7 [PMID: 16140417]
  38. Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15200-5 [PMID: 17015832]
  39. Plant Cell. 1998 Dec;10(12):2115-26 [PMID: 9836749]
  40. Plant Physiol. 2002 Jan;128(1):194-200 [PMID: 11788765]
  41. Plant Cell. 1997 Dec;9(12):2271-80 [PMID: 9437866]
  42. Ann Bot. 2012 Jan;109(1):209-26 [PMID: 22012958]
  43. New Phytol. 2008;179(1):33-54 [PMID: 18422904]
  44. Am J Bot. 1997 Dec;84(12):1714 [PMID: 21708576]
  45. Mol Biol Evol. 2007 Oct;24(10):2298-309 [PMID: 17670808]
  46. Evol Dev. 2001 Mar-Apr;3(2):109-19 [PMID: 11341673]
  47. Nature. 2004 Nov 18;432(7015):289-90 [PMID: 15549085]
  48. PLoS Genet. 2009 Jul;5(7):e1000581 [PMID: 19649161]
  49. Curr Opin Plant Biol. 2002 Feb;5(1):33-6 [PMID: 11788305]
  50. Plant Physiol. 2004 Oct;136(2):3009-22 [PMID: 15489284]
  51. Proc Biol Sci. 2001 Feb 7;268(1464):289-94 [PMID: 11217900]
  52. Biochem J. 2007 Mar 1;402(2):331-7 [PMID: 17092210]

Word Cloud

Created with Highcharts 10.0.0environmentalconditionsgenesdevelopmentduplicationdownstreamprocesssensitivitiesdifferentlifefitnesstimingoccurcombinationscanregulateGeneonedistinctmodelendproceedpathwaystagestolerancesneedsregulatedstageexperiencessuitablemaintainedRestrictingdevelopmentaltransitionsspecificthereforeadaptivelyimportantHoweverimpedingincurdemographiccostsorganismsphysiologicalprocessesbroadestrangepermissiveconditions?offerssolution:MultiplecontributepresentsimpleexaminegeneinfluencedistributionwillshowsretainfunctiondivergeallowcombinationoutcomesdependupstreamcomponentsdiversifiedstructureregulationphysiologyDevelopmentalgeneticredundancynichebreadthphenologyphenotypicplasticity

Similar Articles

Cited By