Expression and distribution of glucagon-like peptide-1 receptor mRNA, protein and binding in the male nonhuman primate (Macaca mulatta) brain.

Kristy M Heppner, Melissa Kirigiti, Anna Secher, Sarah Juel Paulsen, Rikley Buckingham, Charles Pyke, Lotte B Knudsen, Niels Vrang, Kevin L Grove
Author Information
  1. Kristy M Heppner: Division of Diabetes, Obesity, and Metabolism (K.M.H., M.K., R.B., K.L.G.), Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006; Diabetes Research (A.S., C.P., L.B.K.), Novo Nordisk A/S, DK- 2760 Maaloev, Denmark; and Gubra ApS (S.J.P., N.V.), DK-2970, Hørsholm, Denmark.

Abstract

Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent.

References

  1. Am J Physiol Regul Integr Comp Physiol. 2008 Sep;295(3):R874-80 [PMID: 18596108]
  2. Diabetes. 2008 Aug;57(8):2046-54 [PMID: 18487451]
  3. Endocrinology. 2013 Jan;154(1):4-8 [PMID: 23267050]
  4. Exp Diabetes Res. 2012;2012:470851 [PMID: 22666230]
  5. Ann Surg. 2006 Nov;244(5):715-22 [PMID: 17060764]
  6. Int J Obes (Lond). 2014 Jun;38(6):784-93 [PMID: 23999198]
  7. Am J Physiol. 1996 Oct;271(4 Pt 2):R848-56 [PMID: 8897973]
  8. Cardiovasc Diabetol. 2011;10:109 [PMID: 22132774]
  9. Nat Med. 2013 May;19(5):567-75 [PMID: 23542788]
  10. Diabetes Ther. 2013 Dec;4(2):221-38 [PMID: 24057947]
  11. J Psychiatr Res. 2008 Jul;42(9):787-9 [PMID: 17888452]
  12. J Diabetes Complications. 2011 Jul-Aug;25(4):244-6 [PMID: 21601480]
  13. Endocrinology. 2014 Apr;155(4):1280-90 [PMID: 24467746]
  14. Endocrinology. 1997 Oct;138(10):4445-55 [PMID: 9322962]
  15. Diabetes Care. 2005 May;28(5):1092-100 [PMID: 15855572]
  16. Peptides. 2006 Jan;27(1):157-64 [PMID: 16154233]
  17. Clin Ther. 2011 May;33(5):511-27 [PMID: 21665040]
  18. Behav Neurosci. 1985 Apr;99(2):257-76 [PMID: 3843711]
  19. Mol Metab. 2014 Jan 08;3(2):209-15 [PMID: 24634830]
  20. Neuroscience. 1997 Mar;77(1):257-70 [PMID: 9044391]
  21. Brain Res. 2006 Sep 21;1111(1):117-21 [PMID: 16884700]
  22. Rev Endocr Metab Disord. 2011 Sep;12(3):187-95 [PMID: 21336840]
  23. Endocrinology. 2012 May;153(5):2208-22 [PMID: 22334721]
  24. Endocrinology. 2010 Apr;151(4):1473-86 [PMID: 20203154]
  25. Am J Physiol. 1988 Sep;255(3 Pt 1):E255-9 [PMID: 3262311]
  26. J Nucl Med. 2007 May;48(5):736-43 [PMID: 17475961]
  27. J Clin Invest. 1987 Feb;79(2):616-9 [PMID: 3543057]
  28. Am J Physiol. 1997 Oct;273(4 Pt 1):G920-7 [PMID: 9357836]
  29. Brain Res. 2007 May 29;1149:118-26 [PMID: 17433266]
  30. Endocrinology. 1999 Jan;140(1):244-50 [PMID: 9886831]
  31. J Neurosci. 2002 Dec 1;22(23):10470-6 [PMID: 12451146]
  32. Behav Brain Res. 2013 Jan 15;237:164-71 [PMID: 23000536]
  33. Eur J Pharmacol. 2010 Mar 25;630(1-3):158-62 [PMID: 20035739]
  34. Rev Endocr Metab Disord. 2014 Sep;15(3):209-17 [PMID: 24881624]
  35. Endocrinology. 2010 Jun;151(6):2629-40 [PMID: 20363879]
  36. J Neurochem. 1996 Mar;66(3):920-7 [PMID: 8769850]
  37. J Comp Neurol. 1988 May 22;271(4):519-32 [PMID: 3385016]
  38. Int J Obes Relat Metab Disord. 2003 Mar;27(3):313-8 [PMID: 12629557]
  39. Nat Med. 2003 Sep;9(9):1173-9 [PMID: 12925848]
  40. Brain Res. 2008 Mar 14;1199:1-9 [PMID: 18275939]
  41. Neurobiol Aging. 2013 Feb;34(2):576-88 [PMID: 22592020]
  42. Behav Brain Res. 2009 Dec 14;205(1):265-71 [PMID: 19573562]
  43. Alzheimers Dement. 2014 Feb;10(1 Suppl):S55-61 [PMID: 24529526]
  44. Endocrinology. 2011 Aug;152(8):3103-12 [PMID: 21693680]
  45. Lancet. 1987 Dec 5;2(8571):1300-4 [PMID: 2890903]
  46. J Chem Neuroanat. 2008 Dec;36(3-4):144-9 [PMID: 18773953]
  47. Endocrinology. 1987 Sep;121(3):1076-82 [PMID: 3040376]
  48. Diabetes. 2007 Jan;56(1):8-15 [PMID: 17192459]
  49. Eur J Neurosci. 1995 Nov 1;7(11):2294-300 [PMID: 8563978]
  50. Acta Pharmacol Sin. 2012 Feb;33(2):194-200 [PMID: 22301859]
  51. J Neurosci. 1997 Nov 1;17(21):8443-50 [PMID: 9334416]
  52. Dan Med J. 2012 Oct;59(10):A4519 [PMID: 23158895]
  53. BMC Neurosci. 2012;13:33 [PMID: 22443187]
  54. Diabetes. 2010 Aug;59(8):1890-8 [PMID: 20522593]
  55. Psychoneuroendocrinology. 2013 Aug;38(8):1259-70 [PMID: 23219472]
  56. Cardiovasc Diabetol. 2010;9:6 [PMID: 20109208]
  57. Nature. 1998 May 7;393(6680):72-6 [PMID: 9590691]
  58. Drugs Today (Barc). 2009 Feb;45(2):101-13 [PMID: 19343230]
  59. J Neurosci. 2012 Apr 4;32(14):4812-20 [PMID: 22492036]
  60. J Neurosci. 2011 Oct 12;31(41):14453-7 [PMID: 21994361]
  61. Endocrinology. 2013 Jan;154(1):127-39 [PMID: 23183176]
  62. Am J Physiol. 1998 Jan;274(1 Pt 2):R23-9 [PMID: 9458894]
  63. Endocr J. 2008 Oct;55(5):867-74 [PMID: 18506089]
  64. Am J Physiol. 1999 Nov;277(5 Pt 1):E784-91 [PMID: 10567003]
  65. J Neurosci. 2011 Mar 9;31(10):3904-13 [PMID: 21389245]
  66. Nat Rev Endocrinol. 2011 Sep;7(9):507-16 [PMID: 21647189]
  67. J Neurosci. 2011 Apr 27;31(17):6587-94 [PMID: 21525299]
  68. J Clin Invest. 2014 Oct;124(10):4473-88 [PMID: 25202980]
  69. Nature. 1996 Jan 4;379(6560):69-72 [PMID: 8538742]
  70. Am J Physiol Regul Integr Comp Physiol. 2002 Jul;283(1):R99-106 [PMID: 12069935]
  71. Diabetes Technol Ther. 2012 Oct;14(10):951-67 [PMID: 22845681]
  72. Neuroscience. 2011 Apr 28;180:111-21 [PMID: 21329743]
  73. Lancet. 2009 Feb 7;373(9662):473-81 [PMID: 18819705]
  74. Physiol Behav. 2013 Oct 2;122:201-7 [PMID: 23623992]
  75. Endocrinology. 1996 Nov;137(11):5159-62 [PMID: 8895391]
  76. J Neurosci. 2003 Jul 16;23(15):6163-70 [PMID: 12867498]
  77. Diabetes. 1996 Jun;45(6):832-5 [PMID: 8635662]
  78. J Comp Neurol. 1999 Jan 11;403(2):261-80 [PMID: 9886047]
  79. Brain Res. 2011 Jun 23;1397:28-37 [PMID: 21612769]
  80. J Comp Neurol. 2013 Jul 1;521(10):2235-61 [PMID: 23238833]
  81. PLoS One. 2013;8(4):e61965 [PMID: 23613987]
  82. Neuroreport. 1999 Jun 3;10(8):1643-6 [PMID: 10501550]
  83. Diabetes. 1998 Apr;47(4):530-7 [PMID: 9568683]
  84. Int J Obes (Lond). 2014 May;38(5):689-97 [PMID: 23942319]
  85. Diabetes. 2014 Dec;63(12):4186-96 [PMID: 25071023]
  86. J Clin Invest. 2002 Jul;110(1):43-52 [PMID: 12093887]

Grants

  1. P51 OD011092/NIH HHS
  2. RC4 DK090956/NIDDK NIH HHS

MeSH Term

Animals
Antibodies
Antibody Specificity
Brain
Gene Expression Regulation
Glucagon-Like Peptide 1
Glucagon-Like Peptide-1 Receptor
In Situ Hybridization
Macaca mulatta
Male
Protein Binding
RNA, Messenger
Receptors, Glucagon
Tissue Distribution

Chemicals

Antibodies
Glucagon-Like Peptide-1 Receptor
RNA, Messenger
Receptors, Glucagon
Glucagon-Like Peptide 1

Word Cloud

Created with Highcharts 10.0.0GLP-1RprimatebraindistributionrodentGLP-1nucleuskeyreceptorpeptide-1solitarytractexpressionhighlyconservedalthoughdifferencesidentifiednonhumansystemmRNAproteinhypothalamicincludingGlucagon-likereleasedendocrineL-cellslininggutresponsefoodingestionHoweveralsoproducedactsanorecticneurotransmitterregulatormanyautonomicneuroendocrinefunctionsprojectionsGLP-1-producingneuronsmappedstudiesdescribedGLP-1RscentralnervouscharacterizedadultmacaqueusingsituhybridizationradioligandautoradiographyimmunohistochemistryspecificantibodyImmunohistochemistrydemonstratedlocalizedcellbodiesfiberterminalsselectivethroughoutConsistentfunctionalrolefindhighestconcentrationGLP-1R-immunoreactivitypresentselectbrainstemregionsregulatefeedingparaventriculararcuatenucleiwellareapostremadorsalmotorvagusTogetherdatademonstratespeciesamygdalamuchhigherExpressionglucagon-likebindingmaleMacacamulatta

Similar Articles

Cited By