Actuation of shape-memory colloidal fibres of Janus ellipsoids.

Aayush A Shah, Benjamin Schultz, Wenjia Zhang, Sharon C Glotzer, Michael J Solomon
Author Information
  1. Aayush A Shah: 1] Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA [2] [3].
  2. Benjamin Schultz: 1] Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA [2].
  3. Wenjia Zhang: Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
  4. Sharon C Glotzer: 1] Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA [3] Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA [4] Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
  5. Michael J Solomon: 1] Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.

Abstract

Many natural micrometre-scale assemblies can be actuated to control their optical, transport and mechanical properties, yet such functionality is lacking in colloidal structures synthesized thus far. Here, we show with experiments and computer simulations that Janus ellipsoids can self-assemble into self-limiting one-dimensional fibres with shape-memory properties, and that the fibrillar assemblies can be actuated on application of an external alternating-current electric field. Actuation of the fibres occurs through a sliding mechanism that permits the rapid and reversible elongation and contraction of the Janus-ellipsoid chains by ~36% and that on long timescales leads to the generation of long, uniform self-assembled fibres. Colloidal-scale actuation might be useful in microrobotics and in applications of shape-memory materials.

References

  1. Biophys J. 1994 Aug;67(2):782-92 [PMID: 7948691]
  2. Soft Matter. 2014 Mar 7;10(9):1320-4 [PMID: 24652478]
  3. Soft Matter. 2013 Sep 11;9(38):9219-29 [PMID: 24988939]
  4. Langmuir. 2012 Jan 17;28(2):1149-56 [PMID: 22149478]
  5. Nat Mater. 2007 Aug;6(8):557-62 [PMID: 17667968]
  6. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16063-7 [PMID: 19805259]
  7. Macromol Rapid Commun. 2010 Jan 18;31(2):150-68 [PMID: 21590887]
  8. Small. 2012 May 21;8(10):1551-62 [PMID: 22383392]
  9. Langmuir. 2004 Mar 16;20(6):2108-16 [PMID: 15835659]
  10. J Am Chem Soc. 2012 Aug 8;134(31):12901-3 [PMID: 22846156]
  11. ACS Nano. 2010 Jul 27;4(7):3591-605 [PMID: 20568710]
  12. Langmuir. 2013 Apr 16;29(15):4688-96 [PMID: 23510525]
  13. Nature. 2011 Jan 20;469(7330):381-4 [PMID: 21248847]
  14. Nat Mater. 2013 Mar;12(3):217-22 [PMID: 23314105]
  15. J Am Chem Soc. 2011 Mar 2;133(8):2346-9 [PMID: 21250633]
  16. Langmuir. 2008 Dec 2;24(23):13312-20 [PMID: 18973307]
  17. Langmuir. 2010 Sep 21;26(18):14466-71 [PMID: 20715872]
  18. J Chem Phys. 2014 Feb 14;140(6):064903 [PMID: 24527936]
  19. Adv Mater. 2013 May 28;25(20):2779-83 [PMID: 23554152]
  20. Langmuir. 2005 Dec 6;21(25):11547-51 [PMID: 16316077]
  21. Nat Mater. 2009 Jan;8(1):15-23 [PMID: 19096389]
  22. Phys Rev Lett. 1990 Nov 26;65(22):2820-2823 [PMID: 10042703]
  23. Science. 2010 Jul 9;329(5988):197-200 [PMID: 20616274]
  24. Biophys J. 2011 Sep 21;101(6):1432-9 [PMID: 21943424]
  25. Phys Rev Lett. 2004 Feb 6;92(5):058301 [PMID: 14995345]
  26. Langmuir. 2012 Jan 10;28(1):3-9 [PMID: 22171980]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):050401 [PMID: 19518404]
  28. Curr Opin Cell Biol. 2005 Feb;17(1):67-74 [PMID: 15661521]
  29. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2181-6 [PMID: 17277076]

Word Cloud

Created with Highcharts 10.0.0fibrescanshape-memoryassembliesactuatedpropertiescolloidalJanusellipsoidsActuationlongManynaturalmicrometre-scalecontrolopticaltransportmechanicalyetfunctionalitylackingstructuressynthesizedthusfarshowexperimentscomputersimulationsself-assembleself-limitingone-dimensionalfibrillarapplicationexternalalternating-currentelectricfieldoccursslidingmechanismpermitsrapidreversibleelongationcontractionJanus-ellipsoidchains~36%timescalesleadsgenerationuniformself-assembledColloidal-scaleactuationmightusefulmicroroboticsapplicationsmaterials

Similar Articles

Cited By