Development of glandular models from human nasal progenitor cells.

Xiaofang Wu, Remy Mimms, Maureen Banigan, Michael Lee, Viktoria Elkis, Jennifer R Peters-Hall, Humaira Mubeen, Andrew Joselow, Maria T Peña, Mary C Rose
Author Information
  1. Xiaofang Wu: 1 Center for Genetic Medicine Research and.

Abstract

Hyperplasia/hypertrophy of submucosal glands contributes to mucus overproduction in chronic diseases of the upper and lower respiratory tracts, especially in adult and pediatric chronic rhinosinusitis. Mechanisms that lead to glandular hyperplasia/hypertrophy are markedly understudied, reflecting a lack of in vitro model systems wherein airway epithelial progenitor cells differentiate into glandular cells. In this study, we developed and compared several in vitro three-dimensional systems using human nasal epithelial basal cells (HNEBCs) cultured by different methods on two types of extracellular matrices. We demonstrate that HNEBCs cultured on Matrigel (Corning, Tewksbury, MA) form glandular acini-like structures, whereas HNEBCs embedded in a collagen type I matrix form a network of tubules. Fibroblast-conditioned medium increases tubule formation in collagen type I. In contrast, HNEBCs cocultured with fibroblasts self-aggregate into organotypic structures with tubules and acini. These observations provide morphological evidence that HNEBCs are pluripotent and retain the capacity to differentiate into structures resembling specific structural components of submucosal glands depending on the extracellular matrices and culture conditions. The resultant models should prove useful in targeting cross-talk between epithelial cells and fibroblasts to decipher molecular mechanisms and specific signals responsible for the development of glandular hyperplasia/hypertrophy, which in turn may lead to new therapeutic strategies for chronic rhinosinusitis and other inflammatory respiratory diseases characterized by glandular hyperplasia/hypertrophy.

Keywords

References

  1. J Clin Invest. 2014 Apr;124(4):1622-35 [PMID: 24590289]
  2. Development. 1995 Jul;121(7):2031-46 [PMID: 7635050]
  3. Methods. 2003 Jul;30(3):256-68 [PMID: 12798140]
  4. J Vis Exp. 2013 Oct 08;(80): [PMID: 24145828]
  5. Acta Otolaryngol. 1984 Jan-Feb;97(1-2):151-9 [PMID: 6689823]
  6. Am J Respir Cell Mol Biol. 2009 Feb;40(2):189-99 [PMID: 18703793]
  7. Curr Protoc Stem Cell Biol. 2011 Jan;Chapter 2:Unit 2G.1 [PMID: 21207376]
  8. PLoS One. 2011 May 04;6(5):e18378 [PMID: 21572528]
  9. Am J Pathol. 1988 May;131(2):290-7 [PMID: 3358456]
  10. J Cell Physiol. 1994 Dec;161(3):407-18 [PMID: 7962124]
  11. Am J Physiol. 1993 Feb;264(2 Pt 1):L183-92 [PMID: 8447430]
  12. J Cell Physiol. 1986 Jun;127(3):473-9 [PMID: 3711151]
  13. In Vitro Cell Dev Biol Anim. 2010 May;46(5):450-6 [PMID: 19998060]
  14. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12771-5 [PMID: 19625615]
  15. Science. 1976 Dec 24;194(4272):1439-41 [PMID: 827022]
  16. Curr Opin Biotechnol. 2003 Oct;14(5):526-32 [PMID: 14580584]
  17. Ann Otol Rhinol Laryngol. 2011 Jul;120(7):423-7 [PMID: 21859049]
  18. Exp Cell Res. 2004 Oct 1;299(2):335-42 [PMID: 15350533]
  19. J Biomech. 2012 Mar 15;45(5):756-61 [PMID: 22177672]
  20. J Dermatol Sci. 2012 Apr;66(1):29-36 [PMID: 22398148]
  21. Arch Otolaryngol Head Neck Surg. 2002 May;128(5):578-82 [PMID: 12003591]
  22. PLoS One. 2014 Jun 19;9(6):e100537 [PMID: 24945146]
  23. Proteomics. 2010 May;10(9):1886-90 [PMID: 20162561]
  24. Am J Respir Cell Mol Biol. 2011 Jun;44(6):914-21 [PMID: 20724555]
  25. Exp Cell Res. 1997 Dec 15;237(2):357-63 [PMID: 9434631]
  26. Microsc Res Tech. 2008 May;71(5):357-70 [PMID: 18219669]
  27. Am J Respir Cell Mol Biol. 1993 Jan;8(1):69-76 [PMID: 8417759]
  28. Am J Respir Cell Mol Biol. 1990 Jan;2(1):41-50 [PMID: 2306368]
  29. Chest. 1992 Mar;101(3 Suppl):7S-9S [PMID: 1541212]
  30. Dis Model Mech. 2010 Sep-Oct;3(9-10):545-56 [PMID: 20699479]
  31. Stem Cells. 2007 Jan;25(1):139-48 [PMID: 17008423]
  32. Exp Lung Res. 2001 Jul-Aug;27(5):401-15 [PMID: 11480582]
  33. Semin Cancer Biol. 2005 Oct;15(5):378-86 [PMID: 15975825]
  34. Cell. 1991 Aug 23;66(4):697-711 [PMID: 1878968]
  35. Cold Spring Harb Perspect Biol. 2011 Jan 01;3(1):a004978 [PMID: 21421911]
  36. Exp Lung Res. 1994 Jul-Aug;20(4):367-80 [PMID: 7988497]
  37. J Anat. 1970 Sep;107(Pt 2):281-99 [PMID: 5487122]
  38. Eur Respir J. 1997 Oct;10(10):2398-403 [PMID: 9387971]
  39. Am J Physiol. 1995 Mar;268(3 Pt 1):L347-60 [PMID: 7900815]
  40. Methods Mol Med. 2005;107:183-206 [PMID: 15492373]
  41. Ann Otol Rhinol Laryngol. 2007 May;116(5):389-97 [PMID: 17561770]
  42. Am Rev Respir Dis. 1985 Aug;132(2):311-20 [PMID: 3896079]

Grants

  1. K12 HL090020/NHLBI NIH HHS
  2. UL1RR031988/NCRR NIH HHS
  3. P30 HD040677/NICHD NIH HHS
  4. 1P30HD40677/NICHD NIH HHS
  5. UL1 RR031988/NCRR NIH HHS
  6. R21AI097520/NIAID NIH HHS
  7. R21 AI097520/NIAID NIH HHS
  8. R21 AI083995/NIAID NIH HHS
  9. R21AI083995/NIAID NIH HHS
  10. K12HL090020/NHLBI NIH HHS

MeSH Term

Cell Differentiation
Cells, Cultured
Coculture Techniques
Collagen
Collagen Type I
Culture Media, Conditioned
Drug Combinations
Epithelial Cells
Exocrine Glands
Extracellular Matrix
Fibroblasts
Gels
Humans
Laminin
Nasal Mucosa
Organogenesis
Paracrine Communication
Pluripotent Stem Cells
Proteoglycans
Stem Cell Niche
Tissue Engineering

Chemicals

Collagen Type I
Culture Media, Conditioned
Drug Combinations
Gels
Laminin
Proteoglycans
matrigel
Collagen

Word Cloud

Created with Highcharts 10.0.0glandularcellsHNEBCschronichyperplasia/hypertrophyepithelialrhinosinusitishumannasalextracellularstructuressubmucosalglandsdiseasesrespiratoryleadvitrosystemsprogenitordifferentiatebasalculturedmatricesformcollagentypematrixtubulesfibroblastsspecificmodelsHyperplasia/hypertrophycontributesmucusoverproductionupperlowertractsespeciallyadultpediatricMechanismsmarkedlyunderstudiedreflectinglackmodelwhereinairwaystudydevelopedcomparedseveralthree-dimensionalusingdifferentmethodstwotypesdemonstrateMatrigelCorningTewksburyMAacini-likewhereasembeddednetworkFibroblast-conditionedmediumincreasestubuleformationcontrastcoculturedself-aggregateorganotypicaciniobservationsprovidemorphologicalevidencepluripotentretaincapacityresemblingstructuralcomponentsdependingcultureconditionsresultantproveusefultargetingcross-talkdeciphermolecularmechanismssignalsresponsibledevelopmentturnmaynewtherapeuticstrategiesinflammatorycharacterizedDevelopmentsinonasal

Similar Articles

Cited By