Apocalmodulin itself promotes ion channel opening and Ca(2+) regulation.

Paul J Adams, Manu Ben-Johny, Ivy E Dick, Takanari Inoue, David T Yue
Author Information
  1. Paul J Adams: Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
  2. Manu Ben-Johny: Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
  3. Ivy E Dick: Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
  4. Takanari Inoue: Department of Cell Biology and Center for Cell Dynamics, The Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
  5. David T Yue: Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA. Electronic address: dyue@jhmi.edu.

Abstract

The Ca(2+)-free form of calmodulin (apoCaM) often appears inert, modulating target molecules only upon conversion to its Ca(2+)-bound form. This schema has appeared to govern voltage-gated Ca(2+) channels, where apoCaM has been considered a dormant Ca(2+) sensor, associated with channels but awaiting the binding of Ca(2+) ions before inhibiting channel opening to provide vital feedback inhibition. Using single-molecule measurements of channels and chemical dimerization to elevate apoCaM, we find that apoCaM binding on its own markedly upregulates opening, rivaling the strongest forms of modulation. Upon Ca(2+) binding to this CaM, inhibition may simply reverse the initial upregulation. As RNA-edited and -spliced channel variants show different affinities for apoCaM, the apoCaM-dependent control mechanisms may underlie the functional diversity of these variants and explain an elongation of neuronal action potentials by apoCaM. More broadly, voltage-gated Na channels adopt this same modulatory principle. ApoCaM thus imparts potent and pervasive ion-channel regulation. PAPERCLIP:

References

  1. Nature. 1998 Oct 1;395(6701):503-7 [PMID: 9774106]
  2. J Neurophysiol. 1995 Sep;74(3):1137-48 [PMID: 7500139]
  3. Mol Cell. 2005 Jan 21;17(2):193-203 [PMID: 15664189]
  4. Trends Neurosci. 2006 Nov;29(11):617-24 [PMID: 16942804]
  5. Science. 2006 Dec 1;314(5804):1454-7 [PMID: 16990515]
  6. J Neurosci. 2007 Jan 17;27(3):645-56 [PMID: 17234596]
  7. Nature. 2007 Jun 28;447(7148):1081-6 [PMID: 17558391]
  8. Nature. 2007 Jun 28;447(7148):1059-60 [PMID: 17597746]
  9. PLoS Genet. 2007 Jun;3(6):e98 [PMID: 17571925]
  10. Neurobiol Dis. 2008 Mar;29(3):515-28 [PMID: 18191405]
  11. Circ Res. 2008 Apr 11;102(7):e54-64 [PMID: 18356540]
  12. Nature. 2008 Jul 24;454(7203):538-42 [PMID: 18596693]
  13. Ann Neurol. 2008 Dec;64 Suppl 2:S30-46 [PMID: 19127584]
  14. Brain Dev. 2009 Feb;31(2):114-30 [PMID: 18804930]
  15. Trends Mol Med. 2009 Mar;15(3):89-100 [PMID: 19230774]
  16. Mol Cell Biol. 2009 Apr;29(8):2193-204 [PMID: 19188439]
  17. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5135-40 [PMID: 19279214]
  18. Nat Biotechnol. 2009 Oct;27(10):941-5 [PMID: 19801976]
  19. J Cardiovasc Pharmacol. 2009 Sep;54(3):180-7 [PMID: 19333131]
  20. Nature. 2010 Feb 18;463(7283):968-72 [PMID: 20139964]
  21. J Mol Cell Cardiol. 2010 Jul;49(1):16-24 [PMID: 20398673]
  22. Nat Methods. 2010 Aug;7(8):595, 597 [PMID: 20676078]
  23. Nat Methods. 2010 Dec;7(12):973-5 [PMID: 21037589]
  24. EMBO J. 2010 Dec 1;29(23):3924-38 [PMID: 20953164]
  25. J Biol Chem. 2011 Dec 9;286(49):42725-35 [PMID: 21998309]
  26. J Biol Chem. 2011 Dec 9;286(49):42736-48 [PMID: 21998310]
  27. Sci Signal. 2011;4(203):ra87 [PMID: 22169478]
  28. Neuron. 2012 Jan 26;73(2):304-16 [PMID: 22284185]
  29. Nat Commun. 2012;3:778 [PMID: 22491326]
  30. J Physiol. 2012 Dec 15;590(Pt 24):6327-42 [PMID: 23045342]
  31. ACS Chem Biol. 2012 Dec 21;7(12):1950-5 [PMID: 22999378]
  32. Nat Commun. 2013;4:1717 [PMID: 23591884]
  33. J Mol Med (Berl). 2013 Aug;91(8):907-16 [PMID: 23775230]
  34. J Gen Physiol. 2013 Oct;142(4):381-404 [PMID: 24081981]
  35. Nat Commun. 2013;4:2540 [PMID: 24096474]
  36. Cell Rep. 2013 Oct 31;5(2):367-77 [PMID: 24120865]
  37. J Gen Physiol. 2014 Jun;143(6):679-92 [PMID: 24863929]
  38. Cell. 2014 Jun 19;157(7):1657-70 [PMID: 24949975]
  39. J Mol Cell Cardiol. 2014 Sep;74:115-24 [PMID: 24816216]
  40. J Neurophysiol. 1999 Dec;82(6):2903-13 [PMID: 10601428]
  41. J Neurosci. 2001 Aug 15;21(16):5944-51 [PMID: 11487617]
  42. J Biol Chem. 2001 Aug 17;276(33):30794-802 [PMID: 11408490]
  43. J Biol Chem. 2002 Jan 11;277(2):1349-53 [PMID: 11694536]
  44. Annu Rev Physiol. 2002;64:289-311 [PMID: 11826271]
  45. J Neurosci. 2002 Sep 15;22(18):7991-8001 [PMID: 12223552]
  46. Neuron. 2003 Jul 3;39(1):97-107 [PMID: 12848935]
  47. J Neurosci. 2003 Sep 10;23(23):8261-70 [PMID: 12967988]
  48. Nature. 2003 Oct 30;425(6961):917-25 [PMID: 14586460]
  49. Cell Calcium. 2004 May;35(5):415-25 [PMID: 15003851]
  50. J Biol Chem. 2004 Jul 30;279(31):32554-61 [PMID: 15136570]
  51. Cell. 1982 Jan;28(1):41-50 [PMID: 7066986]
  52. Mol Pharmacol. 1984 Jul;26(1):75-82 [PMID: 6087119]
  53. Nature. 1984 Oct 11-17;311(5986):538-44 [PMID: 6207437]
  54. J Neurosci. 1984 Nov;4(11):2866-76 [PMID: 6150070]
  55. J Mol Cell Cardiol. 1986 Jul;18(7):691-710 [PMID: 2427730]
  56. Neuron. 1991 Jul;7(1):35-44 [PMID: 1648940]
  57. Science. 1993 Nov 12;262(5136):1019-24 [PMID: 7694365]
  58. Neuron. 1994 Jun;12(6):1301-18 [PMID: 8011340]
  59. Physiol Rev. 1999 Jul;79(3):661-82 [PMID: 10390515]

Grants

  1. R01 MH065531/NIMH NIH HHS
  2. R01 NS073874/NINDS NIH HHS
  3. R01 NS085074/NINDS NIH HHS
  4. R37 HL076795/NHLBI NIH HHS

MeSH Term

Animals
Calcium Channels
Calcium Channels, L-Type
Calmodulin
Electrophysiological Phenomena
Humans
Mice
Rats
Sodium Channels

Chemicals

CACNA1D protein, human
Calcium Channels
Calcium Channels, L-Type
Calmodulin
Sodium Channels
Cacna1d protein, rat

Word Cloud

Created with Highcharts 10.0.0Ca2+apoCaMchannelsbindingchannelopeningformvoltage-gatedinhibitionmayvariantsregulation-freecalmodulinoftenappearsinertmodulatingtargetmoleculesuponconversion-boundschemaappearedgovernconsidereddormantsensorassociatedawaitingionsinhibitingprovidevitalfeedbackUsingsingle-moleculemeasurementschemicaldimerizationelevatefindmarkedlyupregulatesrivalingstrongestformsmodulationUponCaMsimplyreverseinitialupregulationRNA-edited-splicedshowdifferentaffinitiesapoCaM-dependentcontrolmechanismsunderliefunctionaldiversityexplainelongationof neuronalactionpotentialsbroadlyNaadoptmodulatoryprincipleApoCaMthusimpartspotentpervasiveion-channelPAPERCLIP:Apocalmodulinpromotesion

Similar Articles

Cited By