Paper-based synthetic gene networks.

Keith Pardee, Alexander A Green, Tom Ferrante, D Ewen Cameron, Ajay DaleyKeyser, Peng Yin, James J Collins
Author Information
  1. Keith Pardee: Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.
  2. Alexander A Green: Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.
  3. Tom Ferrante: Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  4. D Ewen Cameron: Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
  5. Ajay DaleyKeyser: Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  6. Peng Yin: Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA.
  7. James J Collins: Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address: jcollins@bu.edu.

Abstract

Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

References

  1. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5850-5 [PMID: 22454498]
  2. PLoS One. 2012;7(2):e31092 [PMID: 22319605]
  3. Angew Chem Int Ed Engl. 2007;46(8):1318-20 [PMID: 17211899]
  4. Nature. 2000 Jan 20;403(6767):335-8 [PMID: 10659856]
  5. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8414-9 [PMID: 15159530]
  6. Anal Chem. 2009 Aug 15;81(16):7091-5 [PMID: 20337388]
  7. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4838-43 [PMID: 24639514]
  8. ACS Synth Biol. 2015 May 15;4(5):503-15 [PMID: 24621257]
  9. Nat Biotechnol. 2001 Aug;19(8):751-5 [PMID: 11479568]
  10. Methods Mol Biol. 2010;607:11-21 [PMID: 20204844]
  11. Nat Med. 2014 Oct;20(10):1211-6 [PMID: 25216635]
  12. Nucleic Acids Res. 1997 Mar 15;25(6):1203-10 [PMID: 9092630]
  13. Nat Biotechnol. 2004 Jul;22(7):841-7 [PMID: 15208640]
  14. Am J Trop Med Hyg. 2012 Aug;87(2):223-230 [PMID: 22855751]
  15. ACS Synth Biol. 2014 Jun 20;3(6):398-409 [PMID: 24328168]
  16. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8617-22 [PMID: 21555549]
  17. Science. 2014 Aug 15;345(6198):829-32 [PMID: 25124443]
  18. Mol Biosyst. 2013 Jun;9(6):1282-5 [PMID: 23511899]
  19. Biochim Biophys Acta. 2009 Feb;1788(2):567-74 [PMID: 19027713]
  20. Mol Syst Biol. 2007;3:133 [PMID: 17700541]
  21. FASEB J. 2010 Aug;24(8):2849-58 [PMID: 20354141]
  22. Subcell Biochem. 2011;52:123-53 [PMID: 21557081]
  23. Nat Biotechnol. 2012 Mar 25;30(4):354-9 [PMID: 22446695]
  24. ACS Synth Biol. 2014 Jun 20;3(6):387-97 [PMID: 24303785]
  25. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15898-903 [PMID: 20713708]
  26. Lab Chip. 2014 Jan 7;14(1):182-8 [PMID: 24169822]
  27. Nat Commun. 2014;5:3283 [PMID: 24513861]
  28. Nat Chem Biol. 2012 Mar 25;8(5):447-54 [PMID: 22446835]
  29. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11290-5 [PMID: 23798438]
  30. Mol Biosyst. 2014 May;10(5):970-1003 [PMID: 24643211]
  31. Nature. 2000 Jan 20;403(6767):339-42 [PMID: 10659857]
  32. Nature. 2000 Aug 10;406(6796):605-8 [PMID: 10949296]
  33. Nat Biotechnol. 2003 Jul;21(7):796-802 [PMID: 12778056]
  34. Nat Methods. 2009 May;6(5):343-5 [PMID: 19363495]

Grants

  1. /Howard Hughes Medical Institute
  2. DP2 OD007292/NIH HHS
  3. 1DP2OD007292/NIH HHS

MeSH Term

Cell-Free System
Ebolavirus
Gene Regulatory Networks
In Vitro Techniques
Nucleic Acid Conformation
Paper
Synthetic Biology

Word Cloud

Created with Highcharts 10.0.0genenetworkscircuitsbeyondvitrosyntheticsensorsSyntheticwide-rangingusesreprogrammingrewiringorganismsdatewayharnessvastpotentialconstraintslaboratoryvivoenvironmentpresentpaper-basedplatformprovidesalternateversatilevenuebiologistsoperatemuch-neededmediumsafedeploymentengineeredlabCommerciallyavailablecell-freesystemsfreezedriedontopaperenablinginexpensivesterileabioticdistributionsynthetic-biology-basedtechnologiesclinicglobalhealthindustryresearcheducationfieldusecreatecolorimetricoutputsdetectioneyefabricatelow-costelectronicopticalinterfacedemonstratetechnologysmall-moleculeRNAactuationgeneticswitchesrapidprototypingcomplexprogrammablediagnosticsincludingglucosestrain-specificEbolavirusPaper-based

Similar Articles

Cited By