Scalable generation of universal platelets from human induced pluripotent stem cells.

Qiang Feng, Namrata Shabrani, Jonathan N Thon, Hongguang Huo, Austin Thiel, Kellie R Machlus, Kyungho Kim, Julie Brooks, Feng Li, Chenmei Luo, Erin A Kimbrel, Jiwu Wang, Kwang-Soo Kim, Joseph Italiano, Jaehyung Cho, Shi-Jiang Lu, Robert Lanza
Author Information
  1. Qiang Feng: Advanced Cell Technology, Marlborough, MA 01752, USA.
  2. Namrata Shabrani: Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
  3. Jonathan N Thon: Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115.
  4. Hongguang Huo: Advanced Cell Technology, Marlborough, MA 01752, USA.
  5. Austin Thiel: Advanced Cell Technology, Marlborough, MA 01752, USA.
  6. Kellie R Machlus: Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115.
  7. Kyungho Kim: Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
  8. Julie Brooks: Advanced Cell Technology, Marlborough, MA 01752, USA.
  9. Feng Li: Advanced Cell Technology, Marlborough, MA 01752, USA.
  10. Chenmei Luo: Advanced Cell Technology, Marlborough, MA 01752, USA.
  11. Erin A Kimbrel: Advanced Cell Technology, Marlborough, MA 01752, USA.
  12. Jiwu Wang: Allele Biotechnology, San Diego, CA 92121, USA.
  13. Kwang-Soo Kim: MacLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
  14. Joseph Italiano: Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115; Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA.
  15. Jaehyung Cho: Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
  16. Shi-Jiang Lu: Advanced Cell Technology, Marlborough, MA 01752, USA.
  17. Robert Lanza: Advanced Cell Technology, Marlborough, MA 01752, USA. Electronic address: rlanza@advancedcell.com.

Abstract

Human induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed. Ultrastructural/morphological analyses show no major differences between iPSC platelets and human blood platelets. iPSC platelets form aggregates, lamellipodia, and filopodia after activation and circulate in macrophage-depleted animals and incorporate into developing mouse thrombi in a manner identical to human platelets. By knocking out the β2-microglobulin gene, we have generated platelets that are negative for the major histocompatibility antigens. The scalable generation of HLA-ABC-negative platelets from a renewable cell source represents an important step toward generating universal platelets for transfusion as well as a potential strategy for the management of platelet refractoriness.

References

  1. Methods Mol Biol. 2012;788:219-47 [PMID: 22130711]
  2. Blood. 1995 Jan 15;85(2):402-13 [PMID: 7529062]
  3. Blood. 2006 Sep 15;108(6):2095-105 [PMID: 16757688]
  4. Cell Rep. 2012 Dec 27;2(6):1722-35 [PMID: 23219550]
  5. Semin Thromb Hemost. 2003 Aug;29(4):363-72 [PMID: 14517748]
  6. Stem Cells Dev. 2011 Mar;20(3):379-90 [PMID: 20504152]
  7. Nat Protoc. 2007;2(8):1963-72 [PMID: 17703208]
  8. PLoS One. 2011 Mar 18;6(3):e17829 [PMID: 21445267]
  9. Nat Biotechnol. 2010 Jun;28(6):611-5 [PMID: 20512123]
  10. Sci Rep. 2012;2:657 [PMID: 22984641]
  11. Br J Haematol. 2008 Jul;142(3):348-60 [PMID: 18510692]
  12. Nat Methods. 2007 Jun;4(6):501-9 [PMID: 17486087]
  13. Science. 2007 Sep 21;317(5845):1767-70 [PMID: 17885137]
  14. J Clin Invest. 1991 Jan;87(1):284-92 [PMID: 1898655]
  15. Circulation. 2003 Apr 29;107(16):2085-8 [PMID: 12707232]
  16. Nat Commun. 2012 May 22;3:852 [PMID: 22617292]
  17. Blood. 2014 Sep 18;124(12):1857-67 [PMID: 25606631]
  18. Blood. 1965 Dec;26(6):720-31 [PMID: 5844145]
  19. Blood. 2012 Aug 23;120(8):1713-6 [PMID: 22773384]
  20. Vox Sang. 2011 Jul;101(1):1-9 [PMID: 21668862]
  21. Stem Cells. 1996;14 Suppl 1:181-7 [PMID: 11012219]
  22. Blood. 2009 Aug 20;114(8):1506-17 [PMID: 19478046]
  23. Nat Mater. 2010 Sep;9(9):768-78 [PMID: 20729850]
  24. Transfus Med Rev. 2010 Jan;24(1):33-43 [PMID: 19962573]
  25. J Exp Med. 2008 Aug 4;205(8):1917-27 [PMID: 18663123]
  26. Cell Signal. 2006 Aug;18(8):1212-8 [PMID: 16380230]
  27. Semin Hematol. 1998 Jul;35(3):192-9 [PMID: 9685165]
  28. Regen Med. 2013 Jul;8(4):413-24 [PMID: 23826696]
  29. Stem Cells. 2006 Dec;24(12):2877-87 [PMID: 16960134]
  30. Cell Res. 2011 Mar;21(3):530-45 [PMID: 21221130]
  31. Development. 1998 May;125(9):1747-57 [PMID: 9521912]
  32. J Exp Med. 2010 Dec 20;207(13):2817-30 [PMID: 21098095]
  33. PLoS One. 2013;8(2):e55530 [PMID: 23424635]
  34. Blood. 2012 Nov 1;120(18):3812-21 [PMID: 22855609]
  35. Lab Invest. 2003 Dec;83(12):1811-20 [PMID: 14691299]
  36. Blood. 2009 Sep 3;114(10):2097-106 [PMID: 19372257]
  37. Biotechnol Bioeng. 2004 Dec 20;88(6):675-80 [PMID: 15532059]
  38. Nat Protoc. 2011 Mar;6(3):296-313 [PMID: 21372811]
  39. Blood. 2008 Jun 1;111(11):5298-306 [PMID: 18388179]
  40. Pediatr Blood Cancer. 2013;60 Suppl 1:S2-7 [PMID: 23109117]
  41. Stem Cells Dev. 2008 Jun;17(3):483-93 [PMID: 18522497]
  42. Development. 2002 Sep;129(17):4147-57 [PMID: 12163416]
  43. Hum Gene Ther. 2013 Dec;24(12):1018-28 [PMID: 24090417]
  44. Blood Rev. 2001 Dec;15(4):175-80 [PMID: 11792118]
  45. Cell Stem Cell. 2014 Apr 3;14(4):535-48 [PMID: 24529595]

Grants

  1. F32 HL118865/NHLBI NIH HHS
  2. RC4 HL106627/NHLBI NIH HHS
  3. 1RC4HL106627-01/NHLBI NIH HHS
  4. R01 HL109439/NHLBI NIH HHS
  5. R00 HL114719/NHLBI NIH HHS
  6. HL109439/NHLBI NIH HHS

MeSH Term

Animals
Antigens, CD34
Blood Platelets
Cell Culture Techniques
Cell Differentiation
Cell Proliferation
Cells, Cultured
Gene Knockout Techniques
HLA Antigens
Humans
Induced Pluripotent Stem Cells
Leukosialin
Male
Megakaryocytes
Mice, Inbred NOD
Mice, SCID
Microscopy, Electron
Microscopy, Fluorescence
Platelet Endothelial Cell Adhesion Molecule-1
Platelet Transfusion
Reproducibility of Results
Transplantation, Heterologous
beta 2-Microglobulin

Chemicals

Antigens, CD34
HLA Antigens
Leukosialin
Platelet Endothelial Cell Adhesion Molecule-1
beta 2-Microglobulin

Word Cloud

Created with Highcharts 10.0.0plateletshumaninducedpluripotentstemcellsiPSCssourcemethodscalablemannermajoriPSCgenerationuniversalHumanprovidepotentiallyreplenishableproductiontransfusabledescribegeneratemegakaryocytesMKsfunctionalserum/feeder-freeconditionsalsopermitscryopreservationMKprogenitorsenablingrapid"surge"capacitylargenumbersneededUltrastructural/morphologicalanalysesshowdifferencesbloodformaggregateslamellipodiafilopodiaactivationcirculatemacrophage-depletedanimalsincorporatedevelopingmousethrombiidenticalknockingβ2-microglobulingenegeneratednegativehistocompatibilityantigensHLA-ABC-negativerenewablecellrepresentsimportantsteptowardgeneratingtransfusionwellpotentialstrategymanagementplateletrefractorinessScalable

Similar Articles

Cited By