Hepatic metabolism affects the atropselective disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in mice.

Xianai Wu, Christopher Barnhart, Pamela J Lein, Hans-Joachim Lehmler
Author Information
  1. Xianai Wu: Department of Occupational and Environmental Health, College of Public Health, The University of Iowa , Iowa City, Iowa 52242, United States.

Abstract

To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs.

References

  1. Environ Res. 2005 Jul;98(3):284-302 [PMID: 15910784]
  2. J Nutr Biochem. 2005 Jun;16(6):383-4 [PMID: 15936651]
  3. Drug Metab Dispos. 2005 Sep;33(9):1341-8 [PMID: 15951448]
  4. J Biol Chem. 2005 Sep 9;280(36):31686-98 [PMID: 16006652]
  5. Toxicol Sci. 2005 Dec;88(2):400-11 [PMID: 16177234]
  6. Aquat Toxicol. 2006 Apr 20;77(1):87-97 [PMID: 16325935]
  7. Toxicol Sci. 2002 Aug;68(2):361-71 [PMID: 12151632]
  8. Annu Rev Pharmacol Toxicol. 2003;43:149-73 [PMID: 12171978]
  9. J Biol Chem. 2003 Jul 11;278(28):25895-901 [PMID: 12697746]
  10. Genesis. 2003 Aug;36(4):177-81 [PMID: 12929087]
  11. Mar Environ Res. 2004 Aug-Dec;58(2-5):475-9 [PMID: 15178068]
  12. Biochem Pharmacol. 1981 Mar 15;30(6):577-88 [PMID: 6791661]
  13. Toxicol Appl Pharmacol. 1982 Sep 15;65(2):264-72 [PMID: 6817469]
  14. Toxicol Appl Pharmacol. 1983 Sep 15;70(2):262-72 [PMID: 6414105]
  15. Biochem Pharmacol. 1983 Nov 1;32(21):3233-9 [PMID: 6416258]
  16. Crit Rev Toxicol. 2006 Mar;36(3):253-89 [PMID: 16686424]
  17. Aquat Toxicol. 2006 Jun 15;78(2):176-85 [PMID: 16621064]
  18. Toxicol Appl Pharmacol. 2006 Oct 1;216(1):157-67 [PMID: 16784763]
  19. Chirality. 2007 Jan;19(1):56-66 [PMID: 17089340]
  20. Environ Sci Technol. 2007 Apr 1;41(7):2153-8 [PMID: 17438756]
  21. Environ Sci Technol. 2007 Jun 1;41(11):3856-63 [PMID: 17612160]
  22. Mar Pollut Bull. 2007 Jul;54(7):963-73 [PMID: 17445835]
  23. Food Chem Toxicol. 2007 Oct;45(10):1846-55 [PMID: 17507135]
  24. Food Chem Toxicol. 2008 Feb;46(2):637-44 [PMID: 17950514]
  25. Environ Toxicol Chem. 2008 Feb;27(2):299-305 [PMID: 18348647]
  26. Environ Pollut. 2008 Apr;152(3):621-9 [PMID: 17707109]
  27. Mar Environ Res. 2008 Jul;66(1):85-7 [PMID: 18378296]
  28. Arch Environ Contam Toxicol. 2008 Oct;55(3):510-7 [PMID: 18437444]
  29. J Chromatogr A. 2008 Oct 17;1207(1-2):146-54 [PMID: 18760792]
  30. Environ Sci Technol. 2009 Jan 1;43(1):114-21 [PMID: 19209593]
  31. J Biochem Mol Toxicol. 2009 Sep-Oct;23(5):357-63 [PMID: 19827131]
  32. Pharmacol Ther. 2010 Feb;125(2):260-85 [PMID: 19931307]
  33. Environ Sci Technol. 2010 Apr 15;44(8):2822-7 [PMID: 19957996]
  34. Chem Res Toxicol. 2013 Nov 18;26(11):1642-51 [PMID: 24107130]
  35. Environ Sci Pollut Res Int. 2014 Jan;21(2):998-1009 [PMID: 23852585]
  36. Environ Pollut. 2014 Mar;186:216-25 [PMID: 24389599]
  37. Environ Sci Technol. 2014 Feb 18;48(4):2436-44 [PMID: 24467194]
  38. Toxicol Sci. 2014 Apr;138(2):379-92 [PMID: 24385416]
  39. Environ Sci Technol. 2014 Apr 1;48(7):3847-55 [PMID: 24628413]
  40. Environ Sci Technol. 2010 Apr 15;44(8):2757-66 [PMID: 20384371]
  41. Environ Sci Technol. 2010 May 15;44(10):3901-7 [PMID: 20402517]
  42. Environ Int. 2010 Nov;36(8):884-92 [PMID: 19923000]
  43. BMC Genomics. 2010;11:643 [PMID: 21087487]
  44. Environ Sci Technol. 2011 Mar 15;45(6):2308-16 [PMID: 21329345]
  45. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4539-46 [PMID: 20615998]
  46. Toxicol Sci. 2011 May;121(1):88-100 [PMID: 21357386]
  47. Ecotoxicology. 2011 Aug;20(6):1300-14 [PMID: 21706407]
  48. Toxicol Sci. 2011 Dec;124(2):261-77 [PMID: 21920951]
  49. Chem Res Toxicol. 2011 Dec 19;24(12):2249-57 [PMID: 22026639]
  50. Environ Mol Mutagen. 2012 Oct;53(8):589-98 [PMID: 22930557]
  51. Environ Sci Technol. 2012 Oct 16;46(20):11393-401 [PMID: 22974126]
  52. Am J Physiol Gastrointest Liver Physiol. 2012 Dec 1;303(11):G1288-95 [PMID: 23064760]
  53. Chem Res Toxicol. 2012 Dec 17;25(12):2796-804 [PMID: 23137097]
  54. Environ Int. 2013 Jan;51:160-7 [PMID: 23228866]
  55. Environ Sci Technol. 2013 Jan 2;47(1):557-62 [PMID: 23215248]
  56. J Chromatogr A. 2013 Feb 22;1278:133-44 [PMID: 23347976]
  57. Environ Int. 2013 Apr;54:128-33 [PMID: 23454108]
  58. Environ Sci Technol. 2013 Jul 2;47(13):6829-35 [PMID: 23320482]
  59. Sci Total Environ. 2013 Sep 1;461-462:99-107 [PMID: 23712120]
  60. Aquat Toxicol. 2013 Sep 15;140-141:204-12 [PMID: 23827775]
  61. Xenobiotica. 2013 Nov;43(11):933-47 [PMID: 23581876]
  62. Environ Sci Technol. 2013;47(21):12184-92 [PMID: 24060104]
  63. J Hazard Mater. 2014 Sep 15;280:612-8 [PMID: 25218260]
  64. Chem Res Toxicol. 2014 Aug 18;27(8):1411-20 [PMID: 24988477]
  65. Comp Biochem Physiol C. 1993 May;105(1):95-106 [PMID: 8101795]
  66. J Lipid Res. 1996 May;37(5):950-61 [PMID: 8725148]
  67. Chem Res Toxicol. 1999 Aug;12(8):690-9 [PMID: 10458702]
  68. Am J Physiol Gastrointest Liver Physiol. 2005 Feb;288(2):G292-9 [PMID: 15513954]
  69. Mol Pharmacol. 2005 Mar;67(3):623-30 [PMID: 15550675]
  70. Cancer Res. 2005 May 15;65(10):4211-7 [PMID: 15899812]

Grants

  1. ES017425/NIEHS NIH HHS
  2. ES013661/NIEHS NIH HHS
  3. P30 ES005605/NIEHS NIH HHS
  4. ES06694/NIEHS NIH HHS
  5. P30 ES006694/NIEHS NIH HHS
  6. T32 ES007059/NIEHS NIH HHS
  7. P42 ES004699/NIEHS NIH HHS
  8. R01 ES017425/NIEHS NIH HHS
  9. R01 ES014901/NIEHS NIH HHS
  10. ES05605/NIEHS NIH HHS

MeSH Term

Animals
Chemical Fractionation
Cytochrome P-450 Enzyme System
Environment
Feces
Female
Glucuronidase
Hydroxylation
Liver
Mice, Knockout
Organ Specificity
Polychlorinated Biphenyls
Stereoisomerism
Sulfatases

Chemicals

Cytochrome P-450 Enzyme System
Polychlorinated Biphenyls
Sulfatases
Glucuronidase
2,3,6,2',3',6'-hexachlorobiphenyl

Word Cloud

Created with Highcharts 10.0.0PCB136mice3KOdisposition22'3'6WThepaticmetabolismchiralHO-PCBsP450levelselutingatropisomersroleextrahepaticPCBs6'-hexachlorobiphenylmetabolitescytochromesignaturestissuesexcretacomparedmajormetabolite6'-hexachlorobiphenyl-5-olsecondenrichedbloodHO-PCBunderstandvsstudiedhydroxylateddefectivedueliver-specificdeletionoxidoreductaseFemalecongenicwildtypetreatedracemicdetermineddaysadministrationtissuehigherFecesrouteexcretionrecoveredfeces+-PCBliverexceptiondisplayedenrichmentfirstFecalchangedtimedifferedlargerenantiomericfractionsresultsdemonstratepossiblyenzymesplayHepaticaffectsatropselective

Similar Articles

Cited By