ModuleBlast: identifying activated sub-networks within and across species.

Guy E Zinman, Shoshana Naiman, Dawn M O'Dee, Nishant Kumar, Gerard J Nau, Haim Y Cohen, Ziv Bar-Joseph
Author Information
  1. Guy E Zinman: Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  2. Shoshana Naiman: The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
  3. Dawn M O'Dee: Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA.
  4. Nishant Kumar: Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  5. Gerard J Nau: Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA.
  6. Haim Y Cohen: The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
  7. Ziv Bar-Joseph: Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA zivbj@cs.cmu.edu.

Abstract

Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NF��B activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein.

References

  1. Nucleic Acids Res. 2008 Jan;36(Database issue):D440-4 [PMID: 17984083]
  2. EMBO J. 2002 Dec 2;21(23):6539-48 [PMID: 12456660]
  3. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9 [PMID: 16381927]
  4. Cell. 2009 Jan 9;136(1):62-74 [PMID: 19135889]
  5. BMC Syst Biol. 2007 Jan 26;1:8 [PMID: 17408515]
  6. Nucleic Acids Res. 2003 Jan 1;31(1):374-8 [PMID: 12520026]
  7. Am J Pathol. 2001 Dec;159(6):2055-69 [PMID: 11733356]
  8. Bioinformatics. 2007 Apr 1;23(7):850-8 [PMID: 17267429]
  9. Microbes Infect. 2010 Feb;12(2):126-34 [PMID: 19925880]
  10. Bioinformatics. 2009 May 1;25(9):1158-64 [PMID: 19297352]
  11. Nature. 2012 Feb 22;483(7388):218-21 [PMID: 22367546]
  12. Genome Biol. 2010;11(7):R77 [PMID: 20653936]
  13. Bioinformatics. 2010 May 1;26(9):1211-8 [PMID: 20228128]
  14. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6544-9 [PMID: 20308572]
  15. PLoS One. 2012;7(7):e39847 [PMID: 22792191]
  16. Bioinformatics. 2007 Aug 15;23(16):2121-8 [PMID: 17545181]
  17. Bioinformatics. 2005 Jun 15;21(12):2898-905 [PMID: 15840709]
  18. PLoS One. 2011;6(7):e22401 [PMID: 21789257]
  19. Nat Protoc. 2007;2(10):2366-82 [PMID: 17947979]
  20. PLoS Comput Biol. 2010 Dec 09;6(12):e1001028 [PMID: 21170309]
  21. Cell Microbiol. 2010 Feb;12(2):129-39 [PMID: 19863554]
  22. Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203 [PMID: 19892828]
  23. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7 [PMID: 16381885]
  24. FEBS Lett. 2008 Mar 5;582(5):543-8 [PMID: 18242175]
  25. PLoS Biol. 2004 Jan;2(1):E9 [PMID: 14737187]
  26. PLoS Genet. 2007 Jun;3(6):e96 [PMID: 17571924]
  27. FEMS Immunol Med Microbiol. 2008 Oct;54(1):92-103 [PMID: 18680519]
  28. Bioinformatics. 2004 Jul 10;20(10):1517-21 [PMID: 15231545]
  29. Bioinformatics. 2008 Jul 1;24(13):i223-31 [PMID: 18586718]
  30. Nat Rev Microbiol. 2005 Apr;3(4):281-94 [PMID: 15806094]
  31. Mol Endocrinol. 2005 Oct;19(10):2466-77 [PMID: 16051664]
  32. Genes Immun. 2006 Sep;7(6):503-13 [PMID: 16826236]
  33. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  34. Bioinformatics. 2005 Mar;21(6):788-93 [PMID: 15509611]
  35. Bioinformatics. 2010 Oct 1;26(19):2416-23 [PMID: 20702396]
  36. Infect Immun. 2003 Aug;71(8):4642-6 [PMID: 12874344]
  37. PLoS One. 2008 Aug 13;3(8):e2924 [PMID: 18698339]
  38. Microb Pathog. 2005 May-Jun;38(5-6):239-47 [PMID: 15925273]
  39. Bioinformatics. 2002;18 Suppl 1:S233-40 [PMID: 12169552]
  40. Nat Genet. 2006 Jul;38(7):830-4 [PMID: 16783381]
  41. Nucleic Acids Res. 2009 Jan;37(Database issue):D619-22 [PMID: 18981052]
  42. Mol Cells. 2009 Mar 31;27(3):271-7 [PMID: 19326072]
  43. BMC Bioinformatics. 2004 Jul 23;5:100 [PMID: 15272936]
  44. PLoS One. 2014 Jan 01;9(1):e84227 [PMID: 24392115]
  45. Cell. 2001 Dec 28;107(7):815-8 [PMID: 11779456]
  46. Cell. 2006 Jan 27;124(2):315-29 [PMID: 16439206]

Grants

  1. 1R01 GM085022/NIGMS NIH HHS
  2. U01HL108642/NHLBI NIH HHS

MeSH Term

Aging
Animals
Apoptosis
Gene Regulatory Networks
Humans
Macaca
Mice
Species Specificity

Word Cloud

Created with Highcharts 10.0.0expressionacrossspeciesresponsenetworksactivateddataModuleBlastanalysisgeneinformationrelevantsub-networksimmuneagingmoduleswithinIdentifyingconserveddivergentpatternsbecomingincreasinglyimportantcommonapproachintegratingassociationorderfindgroupsconnectedgenesrepressedmanycasesresearchersalsointerestedcomparisonsconditionsFindingactivesub-networkhardproblemapplyingrequiresconsiderationsegorthologydifferentsourcesaddresschallengesdevisedusesnetworktopologysearchhighlyappliedinteractionmousemacaquehumanstudyidentifiedseveralconsistentrecentfindingsapoptosisNF��BactivationfollowinginfectionTemporalrevealedcascadesdynamicallyexperimentallyvalidatednovelhypothesesresultingresultsleadingnewinsightsmechanismsusedkeymammalianproteinModuleBlast:identifying

Similar Articles

Cited By (4)