Bayesian Exploratory Factor Analysis.

Gabriella Conti, Sylvia Frühwirth-Schnatter, James J Heckman, Rémi Piatek
Author Information
  1. Gabriella Conti: Department of Applied Health Research, University College London, UK.
  2. Sylvia Frühwirth-Schnatter: Vienna University of Economics and Business, Austria.
  3. James J Heckman: Department of Economics, University of Chicago, USA ; American Bar Foundation, USA.
  4. Rémi Piatek: Department of Economics, University of Copenhagen, Denmark.

Abstract

This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements.

Keywords

References

  1. Am Econ Rev. 2010 May;100(2):234-238 [PMID: 24741117]
  2. Psychosom Med. 2008 May;70(4):397-403 [PMID: 18480188]
  3. Econometrica. 2010 May 1;78(3):883-931 [PMID: 20563300]
  4. J Child Psychol Psychiatry. 1967 May;8(1):1-11 [PMID: 6033260]
  5. J Pers Soc Psychol. 1990 Dec;59(6):1216-29 [PMID: 2283588]
  6. Psychol Bull. 1987 Mar;101(2):213-32 [PMID: 3562706]
  7. Am J Psychiatry. 1969 Dec;126(6):884-8 [PMID: 4900822]
  8. J Am Stat Assoc. 2008 Dec 1;103(484):1438-1456 [PMID: 21218139]
  9. Am Econ Rev. 2013 Oct;103(6):2052-2086 [PMID: 24634518]
  10. BMC Med. 2009 Sep 11;7:46 [PMID: 19747369]
  11. Biometrika. 2011 Jun;98(2):291-306 [PMID: 23049129]
  12. Multivariate Behav Res. 1978 Apr 1;13(2):247-50 [PMID: 26794022]
  13. J Am Stat Assoc. 2011 Jan 1;106(496):1259-1279 [PMID: 23704802]

Grants

  1. R01 HD054702/NICHD NIH HHS
  2. R37 HD065072/NICHD NIH HHS

Word Cloud

Created with Highcharts 10.0.0BayesianFactorExploratoryAnalysisfactorapproachmodelsinterpretabledimensionalModelpaperdevelopsappliesimprovesclassicalapproachesframeworkreliesdedicatedsimultaneouslydeterminesnumberfactorsallocationmeasurementuniquecorrespondingloadingsClassicalidentificationcriteriaappliedintegratedproceduregeneratestableclearlyMonteCarlostudyconfirmsvaliditymethodusedproducelowaggregateshighsetpsychologicalmeasurementsModelsIdentifiabilityMarginalDataAugmentationExpansionSelection

Similar Articles

Cited By