Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee.

Clare C Rittschof, Syed Abbas Bukhari, Laura G Sloofman, Joseph M Troy, Derek Caetano-Anollés, Amy Cash-Ahmed, Molly Kent, Xiaochen Lu, Yibayiri O Sanogo, Patricia A Weisner, Huimin Zhang, Alison M Bell, Jian Ma, Saurabh Sinha, Gene E Robinson, Lisa Stubbs
Author Information
  1. Clare C Rittschof: Institute for Genomic Biology, Departments of Entomology, Neuroscience Program, Department of Entomology, The Pennsylvania State University, University Park, PA 16802; and ccr22@illinois.edu generobi@illinois.edu ljstubbs@illinois.edu.
  2. Syed Abbas Bukhari: Institute for Genomic Biology, Illinois Informatics Institute.
  3. Laura G Sloofman: Institute for Genomic Biology, Center for Biophysics and Computational Biology, and.
  4. Joseph M Troy: Institute for Genomic Biology, Illinois Informatics Institute.
  5. Derek Caetano-Anollés: Institute for Genomic Biology, Cell and Developmental Biology.
  6. Amy Cash-Ahmed: Institute for Genomic Biology, Departments of Entomology.
  7. Molly Kent: Institute for Genomic Biology, Neuroscience Program.
  8. Xiaochen Lu: Institute for Genomic Biology, Cell and Developmental Biology.
  9. Yibayiri O Sanogo: Institute for Genomic Biology, Genomics Core, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195.
  10. Patricia A Weisner: Institute for Genomic Biology, Neuroscience Program.
  11. Huimin Zhang: Institute for Genomic Biology, Cell and Developmental Biology.
  12. Alison M Bell: Institute for Genomic Biology, Neuroscience Program, Animal Biology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
  13. Jian Ma: Institute for Genomic Biology, Bioengineering, and.
  14. Saurabh Sinha: Institute for Genomic Biology, Departments of Entomology, Computer Science.
  15. Gene E Robinson: Institute for Genomic Biology, Departments of Entomology, Neuroscience Program, Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; ccr22@illinois.edu generobi@illinois.edu ljstubbs@illinois.edu.
  16. Lisa Stubbs: Institute for Genomic Biology, Neuroscience Program, Cell and Developmental Biology, ccr22@illinois.edu generobi@illinois.edu ljstubbs@illinois.edu.

Abstract

Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.

Keywords

References

  1. BMC Genomics. 2014;15:86 [PMID: 24479613]
  2. Genome Biol. 2009;10(3):R29 [PMID: 19284633]
  3. BMC Bioinformatics. 2013;14:70 [PMID: 23444967]
  4. Proc Biol Sci. 2012 Dec 22;279(1749):4929-38 [PMID: 23097509]
  5. Int J Biochem Cell Biol. 2012 Sep;44(9):1444-7 [PMID: 22626970]
  6. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1801-10 [PMID: 22691501]
  7. Trends Genet. 2007 Jul;23(7):334-41 [PMID: 17509723]
  8. Proc Biol Sci. 2008 Feb 22;275(1633):393-402 [PMID: 18055387]
  9. Nature. 2009 May 21;459(7245):356-63 [PMID: 19458711]
  10. Cell. 2007 Jun 29;129(7):1389-400 [PMID: 17604726]
  11. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  12. J Exp Biol. 2013 Jun 1;216(Pt 11):2031-8 [PMID: 23678099]
  13. J Biol Chem. 2003 May 16;278(20):17710-5 [PMID: 12586820]
  14. Nat Rev Genet. 2013 Nov;14(11):751-64 [PMID: 24105273]
  15. Science. 2006 Sep 29;313(5795):1922-7 [PMID: 17008524]
  16. J Biol Chem. 1995 Oct 13;270(41):24361-9 [PMID: 7592648]
  17. Annu Rev Genomics Hum Genet. 2013;14:45-65 [PMID: 23875795]
  18. Physiol Behav. 2007 May 16;91(1):15-25 [PMID: 17321556]
  19. Nature. 2011 Feb 10;470(7333):221-6 [PMID: 21307935]
  20. Nucleic Acids Res. 2013 Jan;41(Database issue):D358-65 [PMID: 23180791]
  21. Bioinformatics. 2003;19 Suppl 1:i292-301 [PMID: 12855472]
  22. Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15400-5 [PMID: 19706434]
  23. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  24. Cancer Biol Ther. 2002 Nov-Dec;1(6):640-5 [PMID: 12642687]
  25. Brain Res. 2002 May 24;937(1-2):32-40 [PMID: 12020859]
  26. Hum Mol Genet. 2014 Jan 1;23(1):78-89 [PMID: 23945394]
  27. Nat Rev Neurosci. 2005 Jul;6(7):553-64 [PMID: 15959467]
  28. Oncogene. 2009 Feb 5;28(5):651-61 [PMID: 19015639]
  29. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2621-5 [PMID: 10706625]
  30. Am J Hum Genet. 2008 Jul;83(1):89-93 [PMID: 18571142]
  31. BMC Med Genet. 2007;8:74 [PMID: 18053270]
  32. Nat Commun. 2014;5:3177 [PMID: 24495972]
  33. J Neurosci. 2005 Feb 16;25(7):1761-8 [PMID: 15716412]
  34. Annu Rev Cell Dev Biol. 2004;20:781-810 [PMID: 15473860]
  35. J Histochem Cytochem. 2010 Jul;58(7):669-78 [PMID: 20354145]
  36. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12533-7 [PMID: 25092297]
  37. Source Code Biol Med. 2010 Mar 01;5:3 [PMID: 20193058]
  38. Horm Behav. 2005 Jun;48(1):11-22 [PMID: 15885690]
  39. J Comp Neurol. 2010 Sep 1;518(17):3512-28 [PMID: 20589911]
  40. Neuropsychopharmacology. 2004 Mar;29(3):558-65 [PMID: 14666117]
  41. Dev Biol. 2007 Feb 1;302(1):309-23 [PMID: 17070515]
  42. Nat Neurosci. 2013 Dec;16(12):1731-3 [PMID: 24212674]
  43. PLoS Comput Biol. 2011;7(1):e1001049 [PMID: 21253556]
  44. Nat Cell Biol. 2011 Oct;13(10):1272-9 [PMID: 21968997]
  45. Evolution. 2013 May;67(5):1235-50 [PMID: 23617905]
  46. Cell. 2013 Jan 17;152(1-2):327-39 [PMID: 23332764]
  47. J Comp Neurol. 2009 Nov 1;517(1):37-50 [PMID: 19711380]
  48. Mol Ecol. 2014 Jan;23(1):26-8 [PMID: 24372753]
  49. Hippocampus. 2006;16(10):875-90 [PMID: 16941454]
  50. J Comp Neurol. 2010 Jan 10;518(2):229-53 [PMID: 19937713]
  51. J Neuroendocrinol. 2012 Jan;24(1):225-35 [PMID: 21668533]
  52. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W210-3 [PMID: 20478823]
  53. Bioinformatics. 2009 Jan 15;25(2):211-7 [PMID: 19038984]
  54. Nat Commun. 2014;5:3634 [PMID: 24727981]
  55. Genetics. 2011 Jan;187(1):157-69 [PMID: 20980240]
  56. Nature. 1994 Aug 4;370(6488):375-9 [PMID: 8047143]
  57. Biochem Biophys Res Commun. 2009 Aug 21;386(2):311-5 [PMID: 19523439]
  58. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2477-82 [PMID: 17284605]
  59. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12742-7 [PMID: 15314215]
  60. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10357-62 [PMID: 16002470]
  61. Bioessays. 1998 Feb;20(2):116-25 [PMID: 9631657]
  62. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  63. Curr Biol. 2014 Feb 3;24(3):229-41 [PMID: 24440396]
  64. Science. 2001 Aug 10;293(5532):1074-80 [PMID: 11498575]
  65. Psychoneuroendocrinology. 2010 Aug;35(7):955-62 [PMID: 20630660]
  66. Nature. 2014 Mar 20;507(7492):371-5 [PMID: 24646999]
  67. Synapse. 2010 Feb;64(2):169-71 [PMID: 19852072]
  68. Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18020-5 [PMID: 21960440]
  69. Biol Psychiatry. 2008 Aug 15;64(4):266-72 [PMID: 18440494]
  70. J Neurosci. 2009 Apr 8;29(14):4461-70 [PMID: 19357272]
  71. Nucleic Acids Res. 2010 Jan;38(Database issue):D105-10 [PMID: 19906716]
  72. Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11364-9 [PMID: 19541599]
  73. J Neurosci. 2012 May 16;32(20):6819-29 [PMID: 22593051]
  74. J Comp Neurol. 2009 Jan 1;512(1):84-100 [PMID: 18972576]
  75. Neuroscience. 2004;127(4):893-900 [PMID: 15312901]
  76. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  77. Trends Plant Sci. 2006 Apr;11(4):199-208 [PMID: 16546438]
  78. Hum Mol Genet. 2009 Feb 1;18(3):525-34 [PMID: 19000991]

Grants

  1. R01 GM082937/NIGMS NIH HHS

MeSH Term

Animals
Base Sequence
Bees
Biological Evolution
Brain
DNA Primers
Energy Metabolism
Genomics
Immunohistochemistry
Mice
Microscopy, Fluorescence
Molecular Sequence Annotation
Molecular Sequence Data
Polymerase Chain Reaction
Sequence Analysis, RNA
Signal Transduction
Smegmamorpha
Social Behavior
Species Specificity
Territoriality
Transcription Factors

Chemicals

DNA Primers
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0mechanismsconservedacrossspeciesresponseprocessescommonsocialintrusionmousemetabolismphenotypesappeardiversemolecularunderliegenesmayusedsharedbehavioralterritorysticklebackfishhoneybeemodulatedbrainassociatedenergytranscriptionfactorsgeneticCertaincomplexrepeatedlydueevolutionaryconservationconvergencecontextslikedevelopmentalbodypatterningincreasedappreciationincludehighlynetworksmodifiedlineage-specificmutationsHoweverexistencedeeplybehaviorsyetdemonstratedcomparativegenomicsapproachdeterminewhetherneuromolecularspanningbroadphylogeneticrange:houseMusmusculusGasterosteusaculeatusApismelliferaTerritorysimilarfunctionalincludinghormone-mediatedsignaltransductionneurodevelopmentChangeschromosomeorganizationcoreinvolvedalsofoundseveralhomologoustypicallyneuraldevelopmentthreesuggestingneuronaleffectsinvolvetranscriptionalcascadesevolutionarilyFurthermoreimmunohistochemicalanalysessubsetimplicatedmodulationresultsprovidesupport"toolkits"independentevolutionschallengetaxaNeuromolecularresponseschallenge:NF-κBsignalingaggressionhotspot

Similar Articles

Cited By (83)