Interaction between conjugative and retrotransposable elements in horizontal gene transfer.

Olga Novikova, Dorie Smith, Ingrid Hahn, Arthur Beauregard, Marlene Belfort
Author Information
  1. Olga Novikova: Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America.
  2. Dorie Smith: Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America.
  3. Ingrid Hahn: Department of Biomedical Sciences, University at Albany, Wadsworth Center, NYS Department of Health, Albany, New York, United States of America.
  4. Arthur Beauregard: Department of Biomedical Sciences, University at Albany, Wadsworth Center, NYS Department of Health, Albany, New York, United States of America.
  5. Marlene Belfort: Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York, United States of America.

Abstract

Mobile genetic elements either encode their own mobilization machineries or hijack them from other mobile elements. Multiple classes of mobile elements often coexist within genomes and it is unclear whether they have the capacity to functionally interact and even collaborate. We investigate the possibility that molecular machineries of disparate mobile elements may functionally interact, using the example of a retrotransposon, in the form of a mobile group II intron, found on a conjugative plasmid pRS01 in Lactococcus lactis. This intron resides within the pRS01 ltrB gene encoding relaxase, the enzyme required for nicking the transfer origin (oriT) for conjugal transmission of the plasmid into a recipient cell. Here, we show that relaxase stimulates both the frequency and diversity of retrotransposition events using a retromobility indicator gene (RIG), and by developing a high-throughput genomic retrotransposition detection system called RIG-Seq. We demonstrate that LtrB relaxase not only nicks ssDNA of its cognate oriT in a sequence- and strand-specific manner, but also possesses weak off-target activity. Together, the data support a model in which the two different mobile elements, one using an RNA-based mechanism, the other using DNA-based transfer, do functionally interact. Intron splicing facilitates relaxase expression required for conjugation, whereas relaxase introduces spurious nicks in recipient DNA that stimulate both the frequency of intron mobility and the density of events. We hypothesize that this functional interaction between the mobile elements would promote horizontal conjugal gene transfer while stimulating intron dissemination in the donor and recipient cells.

References

  1. Mol Microbiol. 2007 Mar;63(5):1549-64 [PMID: 17302827]
  2. Nucleic Acids Res. 2002 Mar 1;30(5):1091-102 [PMID: 11861899]
  3. Mol Gen Genet. 1991 May;226(3):473-83 [PMID: 2038309]
  4. Appl Environ Microbiol. 1994 Dec;60(12):4413-20 [PMID: 7811081]
  5. Cell. 1985 Sep;42(2):397-400 [PMID: 2411416]
  6. Genome Res. 2004 Jun;14(6):1188-90 [PMID: 15173120]
  7. Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12554-9 [PMID: 16105942]
  8. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  9. J Bacteriol. 1996 Jun;178(12):3531-8 [PMID: 8655550]
  10. Genome Res. 2001 May;11(5):731-53 [PMID: 11337471]
  11. Microbiol Spectr. 2015 Feb;3(1):MDNA3-0050-2014 [PMID: 26104554]
  12. Nature. 1970 Aug 15;227(5259):680-5 [PMID: 5432063]
  13. Mol Microbiol. 2006 Nov;62(3):709-22 [PMID: 17005014]
  14. EMBO J. 2003 Sep 1;22(17):4555-65 [PMID: 12941706]
  15. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  16. Cold Spring Harb Perspect Biol. 2011 Aug 01;3(8):a003616 [PMID: 20463000]
  17. Antonie Van Leeuwenhoek. 1999 Jul-Nov;76(1-4):27-76 [PMID: 10532372]
  18. Bioinformatics. 2012 Apr 15;28(8):1166-7 [PMID: 22368248]
  19. Nucleic Acids Res. 2010 Apr;38(6):1767-71 [PMID: 20015970]
  20. Genetics. 2008 Jul;179(3):1237-50 [PMID: 18562643]
  21. J Mol Biol. 2002 Apr 26;318(2):287-303 [PMID: 12051838]
  22. FEMS Microbiol Rev. 2009 May;33(3):657-87 [PMID: 19396961]
  23. Genome Biol. 2010;11(8):R86 [PMID: 20738864]
  24. J Mol Biol. 2004 Feb 13;336(2):421-39 [PMID: 14757055]
  25. Nat Rev Microbiol. 2013 Aug;11(8):525-38 [PMID: 23832240]
  26. Annu Rev Genet. 2008;42:587-617 [PMID: 18680436]
  27. Science. 1991 Nov 1;254(5032):663 [PMID: 1948046]
  28. Appl Environ Microbiol. 2005 Oct;71(10):5837-49 [PMID: 16204495]
  29. Stat Appl Genet Mol Biol. 2012 Mar 31;11(3):Article 9 [PMID: 22499706]
  30. Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12282-7 [PMID: 17630285]
  31. Nature. 2000 Apr 27;404(6781):1018-21 [PMID: 10801134]
  32. Mol Microbiol. 1992 Nov;6(21):3213-23 [PMID: 1453959]
  33. Bioessays. 1995 Aug;17(8):733-41 [PMID: 7661854]
  34. Mol Microbiol. 2002 Dec;46(5):1259-72 [PMID: 12453213]
  35. Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16133-40 [PMID: 16186487]
  36. J Bacteriol. 1996 Jun;178(11):3399-401 [PMID: 8655532]
  37. Future Microbiol. 2010 Jul;5(7):1057-71 [PMID: 20632805]
  38. Mol Microbiol. 1997 Sep;25(6):1011-22 [PMID: 9350859]
  39. J Bacteriol. 2005 Feb;187(3):930-9 [PMID: 15659671]
  40. J Bacteriol. 2009 Mar;191(5):1574-80 [PMID: 19074386]
  41. Cell. 1986 Jan 31;44(2):207-10 [PMID: 2417724]
  42. Cell. 1998 Aug 21;94(4):451-62 [PMID: 9727488]
  43. Mol Cell. 2000 Sep;6(3):573-82 [PMID: 11030337]
  44. Mol Microbiol. 2000 Aug;37(3):639-51 [PMID: 10931357]
  45. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  46. Cell. 1993 Apr 9;73(1):133-46 [PMID: 7681727]
  47. EMBO J. 1997 Jan 15;16(2):430-8 [PMID: 9029161]
  48. Mol Cell. 2009 Apr 24;34(2):250-6 [PMID: 19394301]
  49. Appl Environ Microbiol. 2005 May;71(5):2576-86 [PMID: 15870348]
  50. Mol Microbiol. 2004 Mar;51(5):1459-69 [PMID: 14982638]
  51. Mol Microbiol. 2005 Apr;56(2):509-24 [PMID: 15813740]
  52. J Bacteriol. 1995 Jul;177(14):4121-30 [PMID: 7608087]
  53. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15742-7 [PMID: 14673083]

Grants

  1. GM44844/NIGMS NIH HHS
  2. R37 GM039422/NIGMS NIH HHS
  3. GM39422/NIGMS NIH HHS
  4. R01 GM039422/NIGMS NIH HHS
  5. R01 GM044844/NIGMS NIH HHS

MeSH Term

Base Sequence
Conjugation, Genetic
DNA, Single-Stranded
Endoribonucleases
Epistasis, Genetic
Gene Transfer, Horizontal
Introns
Lactococcus lactis
Organisms, Genetically Modified
RNA Splicing
Retroelements

Chemicals

DNA, Single-Stranded
Retroelements
Endoribonucleases

Word Cloud

Created with Highcharts 10.0.0elementsmobilerelaxaseusingintrongenetransferfunctionallyinteractrecipientmachinerieswithinconjugativeplasmidpRS01requiredoriTconjugalfrequencyretrotranspositioneventsnickshorizontalMobilegeneticeitherencodemobilizationhijackMultipleclassesoftencoexistgenomesunclearwhethercapacityevencollaborateinvestigatepossibilitymoleculardisparatemayexampleretrotransposonformgroupIIfoundLactococcuslactisresidesltrBencodingenzymenickingorigintransmissioncellshowstimulatesdiversityretromobilityindicatorRIGdevelopinghigh-throughputgenomicdetectionsystemcalledRIG-SeqdemonstrateLtrBssDNAcognatesequence-strand-specificmanneralsopossessesweakoff-targetactivityTogetherdatasupportmodeltwodifferentoneRNA-basedmechanismDNA-basedIntronsplicingfacilitatesexpressionconjugationwhereasintroducesspuriousDNAstimulatemobilitydensityhypothesizefunctionalinteractionpromotestimulatingdisseminationdonorcellsInteractionretrotransposable

Similar Articles

Cited By