The fundamental tradeoff in genomes and proteomes of prokaryotes established by the genetic code, codon entropy, and physics of nucleic acids and proteins.

Alexander Goncearenco, Igor N Berezovsky
Author Information
  1. Alexander Goncearenco: Computational Biology Unit and Department of Informatics, University of Bergen, N-5008, Bergen, Norway. gonceare@ncbi.nlm.nih.gov.
  2. Igor N Berezovsky: Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore, 138671, Singapore. igorb@bii.a-star.edu.sg.

Abstract

BACKGROUND: Mutations in nucleotide sequences provide a foundation for genetic variability, and selection is the driving force of the evolution and molecular adaptation. Despite considerable progress in the understanding of selective forces and their compositional determinants, the very nature of underlying mutational biases remains unclear.
RESULTS: We explore here a fundamental tradeoff, which analytically describes mutual adjustment of the nucleotide and amino acid compositions and its possible effect on the mutational biases. The tradeoff is determined by the interplay between the genetic code, optimization of the codon entropy, and demands on the structure and stability of nucleic acids and proteins.
CONCLUSION: The tradeoff is the unifying property of all prokaryotes regardless of the differences in their phylogenies, life styles, and extreme environments. It underlies mutational biases characteristic for genomes with different nucleotide and amino acid compositions, providing foundation for evolution and adaptation.

References

  1. Structure. 1999 Jul 15;7(7):723-32 [PMID: 10425675]
  2. Proc Natl Acad Sci U S A. 1962 Apr 15;48:582-92 [PMID: 13918161]
  3. J Mol Biol. 1962 Jul;5:109-18 [PMID: 14470099]
  4. Nucleic Acids Res. 2005;33(13):4016-22 [PMID: 16030352]
  5. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12742-7 [PMID: 16120678]
  6. Curr Opin Microbiol. 2005 Oct;8(5):586-94 [PMID: 16111915]
  7. Nucleic Acids Res. 2006;34(2):564-74 [PMID: 16449200]
  8. Biochem Biophys Res Commun. 2006 Apr 14;342(3):681-4 [PMID: 16499870]
  9. Chem Rev. 2006 May;106(5):1559-88 [PMID: 16683745]
  10. BMC Genomics. 2006;7:307 [PMID: 17147802]
  11. Biochem Biophys Res Commun. 2007 Apr 27;356(1):20-5 [PMID: 17336933]
  12. BMC Struct Biol. 2007;7:18 [PMID: 17394655]
  13. PLoS Comput Biol. 2007 Jan 12;3(1):e5 [PMID: 17222055]
  14. PLoS Comput Biol. 2007 Mar 23;3(3):e52 [PMID: 17381236]
  15. Bioinformatics. 2007 Sep 1;23(17):2231-8 [PMID: 17599925]
  16. J Chem Inf Model. 2008 Jan;48(1):119-27 [PMID: 18161956]
  17. Protein Eng Des Sel. 2008 Apr;21(4):275-8 [PMID: 18245807]
  18. Nucleic Acids Res. 2008 Dec;36(21):6688-719 [PMID: 18948295]
  19. J Bacteriol. 2009 Jan;191(1):65-73 [PMID: 18978059]
  20. Trends Biochem Sci. 2009 Feb;34(2):53-9 [PMID: 19062293]
  21. Biophys J. 2010 Feb 17;98(4):667-77 [PMID: 20159163]
  22. Structure. 2010 Jul 14;18(7):819-28 [PMID: 20637418]
  23. Genome Res. 2000 Feb;10(2):228-36 [PMID: 10673280]
  24. J Biol Chem. 2000 Oct 20;275(42):32383-6 [PMID: 10940293]
  25. Mol Biol Evol. 2000 Nov;17(11):1581-8 [PMID: 11070046]
  26. Genome Biol. 2001;2(4):RESEARCH0010 [PMID: 11305938]
  27. Nucleic Acids Res. 2002 Jun 1;30(11):2501-7 [PMID: 12034839]
  28. Biochemistry. 2002 Jun 25;41(25):8152-61 [PMID: 12069608]
  29. Nucleic Acids Res. 2002 Oct 1;30(19):4272-7 [PMID: 12364606]
  30. Gene. 2002 Sep 4;297(1-2):51-60 [PMID: 12384285]
  31. J Biol Chem. 2003 May 9;278(19):17198-202 [PMID: 12600994]
  32. J Biochem. 2003 Apr;133(4):507-13 [PMID: 12761299]
  33. Gene. 2003 Oct 23;317(1-2):39-47 [PMID: 14604790]
  34. Trends Biochem Sci. 2003 Nov;28(11):593-7 [PMID: 14607089]
  35. Proteins. 2004 Jan 1;54(1):20-40 [PMID: 14705021]
  36. Biochem Biophys Res Commun. 2004 Mar 19;315(4):1097-103 [PMID: 14985126]
  37. Genetics. 2004 Jul;167(3):1507-12 [PMID: 15280258]
  38. J Mol Evol. 1981;17(6):368-76 [PMID: 7288891]
  39. Proteins. 1993 Sep;17(1):49-61 [PMID: 8234244]
  40. Biophys J. 1995 Oct;69(4):1528-35 [PMID: 8534823]
  41. Mol Microbiol. 1997 Aug;25(4):619-37 [PMID: 9379893]
  42. Trends Genet. 1998 Nov;14(11):442-4 [PMID: 9825671]
  43. Curr Opin Struct Biol. 1998 Dec;8(6):738-48 [PMID: 9914256]
  44. Prog Biophys Mol Biol. 1999;71(2):155-241 [PMID: 10097615]
  45. J Mol Biol. 1999 Jul 9;290(2):595-604 [PMID: 10390356]
  46. PLoS Genet. 2010 Sep;6(9):e1001104 [PMID: 20838590]
  47. PLoS Genet. 2010 Sep;6(9):e1001107 [PMID: 20838593]
  48. PLoS Genet. 2010 Sep;6(9):e1001115 [PMID: 20838599]
  49. Phys Biol. 2011 Jun;8(3):035002 [PMID: 21572170]
  50. Genome Biol Evol. 2011;3:383-95 [PMID: 21498884]
  51. Biol Direct. 2012;7:2 [PMID: 22230424]
  52. BMC Genomics. 2012;13:236 [PMID: 22691113]
  53. J Biotechnol. 2012 Oct 31;161(3):287-93 [PMID: 22782143]
  54. Nucleic Acids Res. 2014 Mar;42(5):2879-92 [PMID: 24371267]
  55. PLoS One. 2014;9(3):e91659 [PMID: 24646884]
  56. MBio. 2014;5(2):e00956-14 [PMID: 24667707]

MeSH Term

Archaea
Bacteria
Base Composition
Codon
Entropy
Genetic Code
Genome
Models, Genetic
Mutation
Proteome

Chemicals

Codon
Proteome

Word Cloud

Created with Highcharts 10.0.0tradeoffnucleotidegeneticmutationalbiasesfoundationevolutionadaptationfundamentalaminoacidcompositionscodecodonentropynucleicacidsproteinsprokaryotesgenomesBACKGROUND:MutationssequencesprovidevariabilityselectiondrivingforcemolecularDespiteconsiderableprogressunderstandingselectiveforcescompositionaldeterminantsnatureunderlyingremainsunclearRESULTS:exploreanalyticallydescribesmutualadjustmentpossibleeffectdeterminedinterplayoptimizationdemandsstructurestabilityCONCLUSION:unifyingpropertyregardlessdifferencesphylogenieslifestylesextremeenvironmentsunderliescharacteristicdifferentprovidingproteomesestablishedphysics

Similar Articles

Cited By