Supervised Discriminative Group Sparse Representation for Mild Cognitive Impairment Diagnosis.

Heung-Il Suk, Chong-Yaw Wee, Seong-Whan Lee, Dinggang Shen
Author Information
  1. Heung-Il Suk: Biomedical Research Imaging Center (BRIC) and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Abstract

Research on an early detection of Mild Cognitive Impairment (MCI), a prodromal stage of Alzheimer's Disease (AD), with resting-state functional Magnetic Resonance Imaging (rs-fMRI) has been of great interest for the last decade. Witnessed by recent studies, functional connectivity is a useful concept in extracting brain network features and finding biomarkers for brain disease diagnosis. However, it still remains challenging for the estimation of functional connectivity from rs-fMRI due to the inevitable high dimensional problem. In order to tackle this problem, we utilize a group sparse representation along with a structural equation model. Unlike the conventional group sparse representation method that does not explicitly consider class-label information, which can help enhance the diagnostic performance, in this paper, we propose a novel supervised discriminative group sparse representation method by penalizing a large within-class variance and a small between-class variance of connectivity coefficients. Thanks to the newly devised penalization terms, we can learn connectivity coefficients that are similar within the same class and distinct between classes, thus helping enhance the diagnostic accuracy. The proposed method also allows the learned common network structure to preserve the network specific and label-related characteristics. In our experiments on the rs-fMRI data of 37 subjects (12 MCI; 25 healthy normal control) with a cross-validation technique, we demonstrated the validity and effectiveness of the proposed method, showing the diagnostic accuracy of 89.19 % and the sensitivity of 0.9167.

References

  1. Neuroimage. 2010 Oct 1;52(4):1252-60 [PMID: 20510374]
  2. Neuroimage. 2007 Jul 15;36(4):1189-99 [PMID: 17512218]
  3. Confin Neurol. 1962;22:141-55 [PMID: 13967555]
  4. Psychiatry Res. 2006 Apr 30;146(3):251-61 [PMID: 16524704]
  5. Biol Psychiatry. 2007 Sep 1;62(5):429-37 [PMID: 17210143]
  6. Biol Psychiatry. 2005 May 15;57(10):1079-88 [PMID: 15866546]
  7. Neurology. 1989 Sep;39(9):1159-65 [PMID: 2771064]
  8. PLoS One. 2012;7(12):e50698 [PMID: 23236384]
  9. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  10. Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6493-7 [PMID: 20308545]
  11. J Int Neuropsychol Soc. 2012 Jan;18(1):39-48 [PMID: 22005016]
  12. Med Image Comput Comput Assist Interv. 2012;15(Pt 2):212-9 [PMID: 23286051]
  13. J Neurosci. 2010 Jul 14;30(28):9477-87 [PMID: 20631176]
  14. J Neurophysiol. 2010 Jan;103(1):297-321 [PMID: 19889849]
  15. PLoS One. 2011;6(7):e21935 [PMID: 21818280]
  16. Hum Brain Mapp. 2014 Apr;35(4):1305-19 [PMID: 23417832]
  17. Magn Reson Med. 2009 Dec;62(6):1619-28 [PMID: 19859933]
  18. J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 [PMID: 8417010]
  19. PLoS One. 2013 Jun 18;8(6):e66572 [PMID: 23825545]
  20. PLoS One. 2011;6(4):e14788 [PMID: 21533283]
  21. Nat Neurosci. 2005 May;8(5):679-85 [PMID: 15852014]
  22. Schizophr Res. 2007 Dec;97(1-3):194-205 [PMID: 17628434]
  23. Behav Neurol. 2009;21(1):39-49 [PMID: 19847044]
  24. Cancer. 1950 Jan;3(1):32-5 [PMID: 15405679]
  25. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 [PMID: 16119262]
  26. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18760-5 [PMID: 18003904]
  27. Brain. 2006 May;129(Pt 5):1113-24 [PMID: 16520329]
  28. Hum Brain Mapp. 2001 Nov;14(3):140-51 [PMID: 11559959]
  29. Brain Res. 2009 Dec 11;1302:167-74 [PMID: 19765560]
  30. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  31. PLoS Comput Biol. 2008 Jun;4(6):e1000100 [PMID: 18584043]
  32. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  33. Neuroimage. 2004;23 Suppl 1:S264-74 [PMID: 15501096]
  34. PLoS One. 2012;7(5):e37828 [PMID: 22666397]
  35. J Psychiatr Res. 2008 Oct;42(14):1198-202 [PMID: 18215400]
  36. IEEE Trans Pattern Anal Mach Intell. 2013 Feb;35(2):286-99 [PMID: 22431526]
  37. Radiology. 2009 Mar;250(3):856-66 [PMID: 19164119]
  38. J Psychiatr Res. 1975 Nov;12(3):189-98 [PMID: 1202204]
  39. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  40. Neuroimage. 2012 Jan 16;59(2):895-907 [PMID: 21992749]
  41. Neuroreport. 2006 Feb 6;17(2):209-13 [PMID: 16407773]
  42. Hum Brain Mapp. 2007 Oct;28(10):967-78 [PMID: 17133390]
  43. Neuroimage. 2011 Feb 1;54(3):1812-22 [PMID: 20970508]
  44. PLoS One. 2012;7(3):e33182 [PMID: 22457741]
  45. Neural Netw. 2000 May-Jun;13(4-5):411-30 [PMID: 10946390]
  46. PLoS One. 2012;7(11):e49340 [PMID: 23226208]
  47. Neuroimage. 2012 Feb 1;59(3):2045-56 [PMID: 22019883]
  48. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 [PMID: 15976020]
  49. Brain. 1991 Oct;114 ( Pt 5):2095-122 [PMID: 1933236]
  50. J Nucl Med. 2008 Mar;49(3):390-8 [PMID: 18287270]
  51. Hum Brain Mapp. 2009 Feb;30(2):625-37 [PMID: 18219617]
  52. KDD. 2012;2012:1095-1103 [PMID: 25309808]
  53. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  54. Cereb Cortex. 2000 Feb;10(2):127-41 [PMID: 10667981]
  55. Neuroimage. 2009 Mar;45(1 Suppl):S199-209 [PMID: 19070668]
  56. J Neurosci. 1994 Feb;14(2):655-66 [PMID: 8301356]
  57. Alzheimers Dement. 2012;8(2):131-68 [PMID: 22404854]
  58. Neuroinformatics. 2004;2(2):145-62 [PMID: 15319512]
  59. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  60. J Clin Exp Neuropsychol. 1988 Dec;10(6):727-38 [PMID: 3235647]
  61. Hum Brain Mapp. 2005 Dec;26(4):231-9 [PMID: 15954139]
  62. Neuroimage. 2012 Apr 2;60(2):1106-16 [PMID: 22270352]
  63. IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39 [PMID: 12575879]
  64. Radiology. 2002 Oct;225(1):253-9 [PMID: 12355013]
  65. Neuroimage. 2008 Aug 15;42(2):799-806 [PMID: 18599316]
  66. Inf Process Med Imaging. 2011;22:612-23 [PMID: 21761690]
  67. Neurology. 1984 Jul;34(7):939-44 [PMID: 6610841]
  68. PLoS One. 2012;7(8):e42730 [PMID: 22916152]
  69. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]

Grants

  1. R01 EB008374/NIBIB NIH HHS
  2. R01 EB006733/NIBIB NIH HHS
  3. R01 AG041721/NIA NIH HHS
  4. EB008374/NIBIB NIH HHS
  5. MH100217/NIMH NIH HHS
  6. AG042599/NIA NIH HHS
  7. R01 AG042599/NIA NIH HHS
  8. EB009634/NIBIB NIH HHS
  9. R01 EB009634/NIBIB NIH HHS
  10. AG041721/NIA NIH HHS
  11. EB006733/NIBIB NIH HHS
  12. R01 MH100217/NIMH NIH HHS

MeSH Term

Aged
Brain
Brain Mapping
Cognitive Dysfunction
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Regression Analysis
Support Vector Machine

Word Cloud

Created with Highcharts 10.0.0connectivitymethodfunctionalrs-fMRInetworkgroupsparserepresentationdiagnosticMildCognitiveImpairmentMCIbrainproblemcanenhancevariancecoefficientsaccuracyproposedResearchearlydetectionprodromalstageAlzheimer'sDiseaseADresting-stateMagneticResonanceImaginggreatinterestlastdecadeWitnessedrecentstudiesusefulconceptextractingfeaturesfindingbiomarkersdiseasediagnosisHoweverstillremainschallengingestimationdueinevitablehighdimensionalordertackleutilizealongstructuralequationmodelUnlikeconventionalexplicitlyconsiderclass-labelinformationhelpperformancepaperproposenovelsuperviseddiscriminativepenalizinglargewithin-classsmallbetween-classThanksnewlydevisedpenalizationtermslearnsimilarwithinclassdistinctclassesthushelpingalsoallowslearnedcommonstructurepreservespecificlabel-relatedcharacteristicsexperimentsdata37subjects1225healthynormalcontrolcross-validationtechniquedemonstratedvalidityeffectivenessshowing8919%sensitivity09167SupervisedDiscriminativeGroupSparseRepresentationDiagnosis

Similar Articles

Cited By (26)