Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

Jaydeep P Bardhan
Author Information

Abstract

In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

References

  1. Phys Rev Lett. 2009 Jul 17;103(3):037803 [PMID: 19659321]
  2. J Chem Phys. 2011 Sep 28;135(12):124107 [PMID: 21974512]
  3. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Apr;69(4 Pt 2):046702 [PMID: 15169126]
  4. Biochem Biophys Res Commun. 2009 Sep 25;387(3):467-71 [PMID: 19615341]
  5. J Phys Chem B. 2009 Apr 30;113(17):5694-7 [PMID: 19385689]
  6. Phys Rev Lett. 2011 Jan 28;106(4):046102 [PMID: 21405339]
  7. J Chem Phys. 2011 Mar 28;134(12):125106 [PMID: 21456706]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021901 [PMID: 21929014]
  9. J Chem Phys. 2008 Jan 21;128(3):034501 [PMID: 18205504]
  10. Nat Rev Mol Cell Biol. 2010 Jan;11(1):50-61 [PMID: 19997129]
  11. Phys Chem Chem Phys. 2013 May 21;15(19):7075-86 [PMID: 23552613]
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 1):041206 [PMID: 18999411]
  13. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  14. Dokl Biochem Biophys. 2007 Nov-Dec;417:302-5 [PMID: 18274444]
  15. Proteins. 2001 Sep 1;44(4):400-17 [PMID: 11484218]
  16. J Colloid Interface Sci. 2011 Jul 15;359(2):520-9 [PMID: 21531429]
  17. Science. 1983 Aug 19;221(4612):709-13 [PMID: 6879170]
  18. Phys Rev Lett. 2009 Feb 6;102(5):057603 [PMID: 19257555]
  19. J Chem Phys. 2008 Sep 14;129(10):104512 [PMID: 19044929]
  20. Q Rev Biophys. 1984 Aug;17(3):283-422 [PMID: 6098916]
  21. J Phys Chem Lett. 2011 Jun;2(13):1626-1632 [PMID: 21765968]
  22. Phys Rev A. 1992 Jan 15;45(2):611-617 [PMID: 9907025]
  23. J Chem Phys. 2012 Nov 28;137(20):204111 [PMID: 23205985]
  24. J Phys Chem B. 2005 Apr 14;109(14):6754-63 [PMID: 16851760]
  25. J Chem Phys. 2004 Apr 1;120(13):6085-93 [PMID: 15267492]
  26. J Chem Phys. 2012 Sep 28;137(12):124101 [PMID: 23020318]
  27. Phys Rev A. 1991 Jul 15;44(2):1156-1168 [PMID: 9906065]
  28. J Chem Phys. 2009 Jul 28;131(4):044503 [PMID: 19655890]
  29. J Chem Phys. 2011 Sep 14;135(10):104113 [PMID: 21932882]
  30. J Chem Phys. 2009 Mar 14;130(10):104108 [PMID: 19292524]
  31. J Chem Phys. 2010 Mar 28;132(12):124101 [PMID: 20370108]
  32. Annu Rev Biophys. 2008;37:375-97 [PMID: 18573087]
  33. J Chem Phys. 2010 Feb 14;132(6):064101 [PMID: 20151727]
  34. J Chem Phys. 2013 Aug 7;139(5):054115 [PMID: 23927251]
  35. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):052501 [PMID: 21230529]
  36. J Chem Phys. 2007 May 21;126(19):195102 [PMID: 17523838]
  37. Phys Rev Lett. 1996 Feb 19;76(8):1280-1283 [PMID: 10061681]
  38. Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):266104 [PMID: 15697995]
  39. Biophys J. 2008 Feb 15;94(4):1169-84 [PMID: 17951303]
  40. J Chem Theory Comput. 2013 Apr 9;9(4):1896-908 [PMID: 26583541]
  41. J Chem Phys. 2010 Sep 14;133(10):104104 [PMID: 20849161]
  42. Science. 1995 May 26;268(5214):1144-9 [PMID: 7761829]
  43. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  44. Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
  45. J Chem Phys. 2013 Mar 21;138(11):111102 [PMID: 23534620]
  46. J Chem Theory Comput. 2009 Feb 10;5(2):257-266 [PMID: 20150952]
  47. Annu Rev Biophys Biophys Chem. 1990;19:301-32 [PMID: 2194479]
  48. J Chem Phys. 2013 Aug 21;139(7):074109 [PMID: 23968074]
  49. J Theor Biol. 2011 May 7;276(1):50-6 [PMID: 21300072]
  50. Protein Sci. 1998 Jan;7(1):206-10 [PMID: 9514276]
  51. Nano Lett. 2012 Jun 13;12(6):3308-14 [PMID: 22616689]
  52. J Comput Chem. 2005 Dec;26(16):1668-88 [PMID: 16200636]
  53. Bioinformatics. 2007 Jan 15;23(2):e99-103 [PMID: 17237112]
  54. Biopolymers. 2007 Oct 5-15;87(2-3):149-64 [PMID: 17626298]
  55. J Phys Condens Matter. 2009 Jun 24;21(25):255901 [PMID: 21828443]
  56. J Comput Chem. 2009 Jan 15;30(1):132-53 [PMID: 18567005]
  57. Biophys J. 2004 Sep;87(3):1544-57 [PMID: 15345535]
  58. Biophys Chem. 1999 Apr 5;78(1-2):1-20 [PMID: 17030302]
  59. J Chem Theory Comput. 2012 Jun 12;8(6):2062-70 [PMID: 26593838]
  60. J Phys Chem B. 2012 Mar 1;116(8):2504-12 [PMID: 22268641]
  61. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021915 [PMID: 20866845]
  62. Biophys J. 1996 Apr;70(4):1745-52 [PMID: 8785333]
  63. Phys Rev Lett. 2011 Oct 14;107(16):166102 [PMID: 22107406]
  64. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056303 [PMID: 23214872]
  65. Phys Rev Lett. 2004 Sep 3;93(10):108104 [PMID: 15447456]
  66. J Phys Condens Matter. 2009 Oct 21;21(42):424115 [PMID: 21715850]
  67. J Chem Phys. 2009 Dec 21;131(23):234303 [PMID: 20025325]
  68. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  69. Proteins. 1998 Oct 1;33(1):1-17 [PMID: 9741840]
  70. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Nov;50(5):R3318-R3321 [PMID: 9962500]
  71. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Sep;70(3 Pt 1):031109 [PMID: 15524508]
  72. Annu Rev Biophys Biophys Chem. 1990;19:423-65 [PMID: 2194482]
  73. J Chem Phys. 2006 Apr 14;124(14):144714 [PMID: 16626238]
  74. J Chem Phys. 2011 Aug 28;135(8):084514 [PMID: 21895206]
  75. Biopolymers. 2012 Jun;97(6):374-96 [PMID: 21994072]
  76. J Phys Chem Lett. 2013 Apr 4;4(7):1205-10 [PMID: 26282043]
  77. J Chem Phys. 2008 Aug 21;129(7):075101 [PMID: 19044802]
  78. J Chem Phys. 2008 Oct 14;129(14):144105 [PMID: 19045132]
  79. Nanotechnology. 2007 Feb 21;18(7):075702 [PMID: 21730510]
  80. Phys Rev Lett. 2010 Jan 8;104(1):018101 [PMID: 20366396]
  81. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):063201 [PMID: 23848796]
  82. Biophys Chem. 1999 Apr 5;78(1-2):89-96 [PMID: 17030305]
  83. Curr Opin Struct Biol. 2004 Oct;14(5):562-9 [PMID: 15465316]
  84. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 1):031206 [PMID: 12366105]
  85. Biomaterials. 2007 Jan;28(2):354-69 [PMID: 21898921]
  86. J Chem Phys. 2011 Aug 7;135(5):055104 [PMID: 21823735]
  87. Phys Rev A Gen Phys. 1989 Dec 1;40(11):6431-6437 [PMID: 9902040]
  88. Phys Rev Lett. 2009 Aug 28;103(9):097403 [PMID: 19792829]
  89. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):022305 [PMID: 24032831]
  90. J Mol Biol. 1985 Sep 20;185(2):389-404 [PMID: 2414450]
  91. Adv Colloid Interface Sci. 2009 Nov 30;152(1-2):48-88 [PMID: 19879552]
  92. Chem Rev. 1999 Aug 11;99(8):2071-2084 [PMID: 11849019]

Grants

  1. R21 GM102642/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0continuummodelsdielectricmodelingmolecularmodeldevelopmentdevelopingmaterialsbiologicalmoleculessurveyscienceresponsenonlocalelectrostaticbiologyhighlightingusequestionsinterestbridgeresearchersrecentprogressnonlocal-dielectricstudyingbehaviorproteinsnucleicacidsareasessentialtoolsatomisticsimulationsegdynamicsexpensiveessentiallynanoscalesystemsstandardinvolvinglocalbasicallydubiousbestadvancedtheoriesdiscussedaimremedyshortcomingsaddingfeaturesnonlinearitiesresultingsaturationbegindescribingcentralroleinteractionsscalemotivatecomputationallytractableusingapplicationsengineeringcontexthighlightimportantchallengesremaindiversetheoreticalformalismstreatmentrigorousstatisticalmechanicssupportimprovementaddressimplementationapproachpioneeredDogonadzeKornyshevcollaboratorsalmostfortyyearsagosimplestjustscalarformgradientelasticityideasgradient-basedextendincludeadditionallengthscalespaperconcludesdiscussionopenmanyopportunitiescommunityleveragephysicalmathematicalcomputationalexpertisehelpsolveonechallengingbiophysicsGradientModelsMolecularBiophysics:ProgressChallengesOpportunities

Similar Articles

Cited By (2)