A simulation approach for change-points on phylogenetic trees.

Adam Persing, Ajay Jasra, Alexandros Beskos, David Balding, Maria De Iorio
Author Information
  1. Adam Persing: 1 Department of Statistical Science, University College London , London, United Kingdom .

Abstract

We observe n sequences at each of m sites and assume that they have evolved from an ancestral sequence that forms the root of a binary tree of known topology and branch lengths, but the sequence states at internal nodes are unknown. The topology of the tree and branch lengths are the same for all sites, but the parameters of the evolutionary model can vary over sites. We assume a piecewise constant model for these parameters, with an unknown number of change-points and hence a transdimensional parameter space over which we seek to perform Bayesian inference. We propose two novel ideas to deal with the computational challenges of such inference. Firstly, we approximate the model based on the time machine principle: the top nodes of the binary tree (near the root) are replaced by an approximation of the true distribution; as more nodes are removed from the top of the tree, the cost of computing the likelihood is reduced linearly in n. The approach introduces a bias, which we investigate empirically. Secondly, we develop a particle marginal Metropolis-Hastings (PMMH) algorithm, that employs a sequential Monte Carlo (SMC) sampler and can use the first idea. Our time-machine PMMH algorithm copes well with one of the bottle-necks of standard computational algorithms: the transdimensional nature of the posterior distribution. The algorithm is implemented on simulated and real data examples, and we empirically demonstrate its potential to outperform competing methods based on approximate Bayesian computation (ABC) techniques.

Keywords

References

  1. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  2. Nature. 2002 Dec 5;420(6915):520-62 [PMID: 12466850]
  3. FEMS Yeast Res. 2013 Feb;13(1):117-25 [PMID: 23110448]
  4. Mol Biol Evol. 2013 Mar;30(3):669-88 [PMID: 23233462]
  5. Syst Biol. 2007 Dec;56(6):975-87 [PMID: 18075934]
  6. Genome Res. 2005 Aug;15(8):1034-50 [PMID: 16024819]
  7. Genetics. 1997 Feb;145(2):505-18 [PMID: 9071603]
  8. Mol Biol Evol. 1996 Jan;13(1):93-104 [PMID: 8583911]
  9. Genetics. 1995 Feb;139(2):993-1005 [PMID: 7713447]
  10. Mol Biol Evol. 1994 May;11(3):436-42 [PMID: 8015437]
  11. Mol Biol Evol. 1994 Mar;11(2):316-24 [PMID: 8170371]
  12. Mol Biol Evol. 1993 Nov;10(6):1396-401 [PMID: 8277861]
  13. Cold Spring Harb Symp Quant Biol. 1987;52:825-37 [PMID: 3454291]
  14. J Mol Evol. 1981;17(6):368-76 [PMID: 7288891]
  15. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4164-8 [PMID: 1069306]
  16. Science. 1971 Jun 11;172(3988):1089-96 [PMID: 5574514]
  17. Syst Biol. 2004 Aug;53(4):571-81 [PMID: 15371247]
  18. Nature. 2004 Apr 1;428(6982):493-521 [PMID: 15057822]
  19. Science. 2003 Feb 28;299(5611):1391-4 [PMID: 12610304]
  20. Syst Biol. 2012 Jul;61(4):579-93 [PMID: 22223445]

MeSH Term

Algorithms
Evolution, Molecular
Models, Genetic
Phylogeny
Software

Word Cloud

Created with Highcharts 10.0.0treesitesbinarynodesmodelBayesianapproximatealgorithmnassumesequenceroottopologybranchlengthsunknownparameterscanchange-pointstransdimensionalinferencecomputationalbasedtimemachinetopdistributionapproachempiricallyparticlemarginalMetropolis-HastingsPMMHsequentialMonteCarlocomputationtreesobservesequencesmevolvedancestralformsknownstatesinternalevolutionaryvarypiecewiseconstantnumberhenceparameterspaceseekperformproposetwonovelideasdealchallengesFirstlyprinciple:nearreplacedapproximationtrueremovedcostcomputinglikelihoodreducedlinearlyintroducesbiasinvestigateSecondlydevelopemploysSMCsamplerusefirstideatime-machinecopeswellonebottle-necksstandardalgorithms:natureposteriorimplementedsimulatedrealdataexamplesdemonstratepotentialoutperformcompetingmethodsABCtechniquessimulationphylogeneticchange-pointmodelssamplers

Similar Articles

Cited By