Topological sensitivity analysis for systems biology.

Ann C Babtie, Paul Kirk, Michael P H Stumpf
Author Information
  1. Ann C Babtie: Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
  2. Paul Kirk: Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
  3. Michael P H Stumpf: Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom m.stumpf@imperial.ac.uk.

Abstract

Mathematical models of natural systems are abstractions of much more complicated processes. Developing informative and realistic models of such systems typically involves suitable statistical inference methods, domain expertise, and a modicum of luck. Except for cases where physical principles provide sufficient guidance, it will also be generally possible to come up with a large number of potential models that are compatible with a given natural system and any finite amount of data generated from experiments on that system. Here we develop a computational framework to systematically evaluate potentially vast sets of candidate differential equation models in light of experimental and prior knowledge about biological systems. This topological sensitivity analysis enables us to evaluate quantitatively the dependence of model inferences and predictions on the assumed model structures. Failure to consider the impact of structural uncertainty introduces biases into the analysis and potentially gives rise to misleading conclusions.

Keywords

References

  1. Mol Biol Cell. 1998 Dec;9(12):3273-97 [PMID: 9843569]
  2. Bioinformatics. 2014 Sep 1;30(17):i468-74 [PMID: 25161235]
  3. Math Biosci. 2013 Dec;246(2):305-14 [PMID: 23535194]
  4. Mol Biosyst. 2011 May;7(5):1593-602 [PMID: 21380410]
  5. PLoS Comput Biol. 2007 Oct;3(10):1871-78 [PMID: 17922568]
  6. Bioinformatics. 2009 Nov 15;25(22):2937-44 [PMID: 19706742]
  7. PLoS Comput Biol. 2014 Jun;10(6):e1003650 [PMID: 24922483]
  8. Bioinformatics. 2015 Feb 15;31(4):604-5 [PMID: 25399028]
  9. Curr Opin Biotechnol. 2011 Feb;22(1):109-16 [PMID: 20970318]
  10. PLoS One. 2014;9(5):e95276 [PMID: 24802016]
  11. Interface Focus. 2011 Dec 6;1(6):857-70 [PMID: 23226586]
  12. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  13. Bioinformatics. 2009 May 15;25(10):1300-6 [PMID: 19289448]
  14. BMC Bioinformatics. 2009;10:448 [PMID: 20038296]
  15. Sci Signal. 2013 May 28;6(277):ra41 [PMID: 23716718]
  16. Bioinformatics. 2010 Jan 1;26(1):104-10 [PMID: 19880371]
  17. BMC Biol. 2014;12:29 [PMID: 24886484]
  18. Bioinformatics. 2012 Dec 15;28(24):3298-305 [PMID: 23074260]
  19. Bioinformatics. 2014 Jan 15;30(2):221-7 [PMID: 24297519]
  20. Curr Opin Biotechnol. 2008 Aug;19(4):389-95 [PMID: 18620054]
  21. Bioinformatics. 2012 Jun 15;28(12):i233-41 [PMID: 22689766]
  22. FEBS Lett. 2009 Dec 17;583(24):3923-30 [PMID: 19879267]
  23. J Am Stat Assoc. 2011;106(496):1242-1258 [PMID: 23204614]
  24. J R Soc Interface. 2014 Feb 6;11(91):20130505 [PMID: 24307566]
  25. Science. 1989 Oct 13;246(4927):221-6 [PMID: 17839016]
  26. Genome Biol. 2006;7(5):R36 [PMID: 16686963]
  27. Nat Biotechnol. 2007 Sep;25(9):1001-6 [PMID: 17846631]
  28. Mol Biosyst. 2010 Oct;6(10):1890-900 [PMID: 20556289]
  29. Curr Opin Biotechnol. 2013 Aug;24(4):767-74 [PMID: 23578462]
  30. Bioinformatics. 2013 Apr 15;29(8):1060-7 [PMID: 23525069]

Grants

  1. BB/K017284/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Models, Biological
Systems Biology

Word Cloud

Created with Highcharts 10.0.0systemsmodelsanalysisnaturalinferencesystemevaluatepotentiallybiologicalsensitivitymodelMathematicalabstractionsmuchcomplicatedprocessesDevelopinginformativerealistictypicallyinvolvessuitablestatisticalmethodsdomainexpertisemodicumluckExceptcasesphysicalprinciplesprovidesufficientguidancewillalsogenerallypossiblecomelargenumberpotentialcompatiblegivenfiniteamountdatageneratedexperimentsdevelopcomputationalframeworksystematicallyvastsetscandidatedifferentialequationlightexperimentalpriorknowledgetopologicalenablesusquantitativelydependenceinferencespredictionsassumedstructuresFailureconsiderimpactstructuraluncertaintyintroducesbiasesgivesrisemisleadingconclusionsTopologicalbiologynetworksdynamicalnetworkrobustness

Similar Articles

Cited By (31)