Predicting species' tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses.

C Haris Saslis-Lagoudakis, Xia Hua, Elisabeth Bui, Camile Moray, Lindell Bromham
Author Information
  1. C Haris Saslis-Lagoudakis: Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia and CSIRO Land and Water, GPO Box 1666, Canberra, Australian Capital Territory 2601, Australia C.H.SaslisLagoudakis@gmail.com.
  2. Xia Hua: Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia and CSIRO Land and Water, GPO Box 1666, Canberra, Australian Capital Territory 2601, Australia.
  3. Elisabeth Bui: Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia and CSIRO Land and Water, GPO Box 1666, Canberra, Australian Capital Territory 2601, Australia.
  4. Camile Moray: Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia and CSIRO Land and Water, GPO Box 1666, Canberra, Australian Capital Territory 2601, Australia.
  5. Lindell Bromham: Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia and CSIRO Land and Water, GPO Box 1666, Canberra, Australian Capital Territory 2601, Australia.

Abstract

BACKGROUND AND AIMS: Salt tolerance has evolved many times independently in different plant groups. One possible explanation for this pattern is that it builds upon a general suite of stress-tolerance traits. If this is the case, then we might expect a correlation between salt tolerance and other tolerances to different environmental stresses. This association has been hypothesized for salt and alkalinity tolerance. However, a major limitation in investigating large-scale patterns of these tolerances is that lists of known tolerant species are incomplete. This study explores whether species' salt and alkalinity tolerance can be predicted using geochemical modelling for Australian grasses. The correlation between taxa found in conditions of high predicted salinity and alkalinity is then assessed.
METHODS: Extensive occurrence data for Australian grasses is used together with geochemical modelling to predict values of pH and electrical conductivity to which species are exposed in their natural distributions. Using parametric and phylogeny-corrected tests, the geochemical predictions are evaluated using a list of known halophytes as a control, and it is determined whether taxa that occur in conditions of high predicted salinity are also found in conditions of high predicted alkalinity.
KEY RESULTS: It is shown that genera containing known halophytes have higher predicted salinity conditions than those not containing known halophytes. Additionally, taxa occurring in high predicted salinity tend to also occur in high predicted alkalinity.
CONCLUSIONS: Geochemical modelling using species' occurrence data is a potentially useful approach to predict species' relative natural tolerance to challenging environmental conditions. The findings also demonstrate a correlation between salinity tolerance and alkalinity tolerance. Further investigations can consider the phylogenetic distribution of specific traits involved in these ecophysiological strategies, ideally by incorporating more complete, finer-scale geochemical information, as well as laboratory experiments.

Keywords

References

  1. Science. 2008 Dec 5;322(5907):1478-80 [PMID: 19056965]
  2. Extremophiles. 2009 May;13(3):447-59 [PMID: 19247786]
  3. Methods Mol Biol. 2012;913:305-33 [PMID: 22895769]
  4. Trends Ecol Evol. 2008 Mar;23(3):141-8 [PMID: 18291557]
  5. Biol Lett. 2013 Aug 07;9(5):20130566 [PMID: 23925836]
  6. Evolution. 2008 Nov;62(11):2868-83 [PMID: 18752605]
  7. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  8. New Phytol. 2008;179(4):945-963 [PMID: 18565144]
  9. New Phytol. 2005 Sep;167(3):645-63 [PMID: 16101905]
  10. Philos Trans R Soc Lond B Biol Sci. 1989 Dec 21;326(1233):119-57 [PMID: 2575770]
  11. Ecol Lett. 2005 Sep;8(9):993-1009 [PMID: 34517687]
  12. Proc Biol Sci. 2012 Aug 22;279(1741):3304-11 [PMID: 22628474]
  13. J Exp Bot. 2013 Jan;64(1):119-27 [PMID: 23186621]
  14. Biol Lett. 2013 Aug 07;9(5):20130642 [PMID: 23925838]
  15. Trends Plant Sci. 2014 Jun;19(6):371-9 [PMID: 24630845]
  16. J Exp Bot. 2013 Oct;64(13):4047-52 [PMID: 23913955]
  17. J Evol Biol. 2014 Mar;27(3):653-9 [PMID: 24494637]
  18. Plant Physiol Biochem. 2010 Apr;48(4):247-55 [PMID: 20199868]
  19. Biol Lett. 2014 Jul;10(7): [PMID: 25079493]
  20. Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15132-7 [PMID: 25267640]
  21. Methods Enzymol. 2007;428:419-38 [PMID: 17875432]
  22. Proc Biol Sci. 2009 Jan 7;276(1654):21-30 [PMID: 18796398]
  23. Syst Biol. 2007 Apr;56(2):252-70 [PMID: 17464881]
  24. Mol Phylogenet Evol. 2007 Jun;43(3):1106-17 [PMID: 17434758]
  25. Biol Lett. 2013 Feb 27;9(2):20130029 [PMID: 23445947]
  26. Science. 2002 May 10;296(5570):1077-82 [PMID: 12004120]
  27. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  28. Ann Bot. 2013 Nov;112(7):1209-21 [PMID: 24085482]

MeSH Term

Australia
Hydrogen-Ion Concentration
Models, Biological
Plant Dispersal
Poaceae
Salinity
Salt Tolerance
Salt-Tolerant Plants
Sodium Chloride

Chemicals

Sodium Chloride

Word Cloud

Created with Highcharts 10.0.0tolerancealkalinitypredictedgeochemicalsalinityusingconditionshighsaltknownspecies'modellinggrasseshalophytescorrelationAustraliantaxadataalsodifferenttraitscasetolerancesenvironmentalspeciesstudywhethercanfoundoccurrencepredictnaturaloccurcontainingdistributionBACKGROUNDANDAIMS:SaltevolvedmanytimesindependentlyplantgroupsOnepossibleexplanationpatternbuildsupongeneralsuitestress-tolerancemightexpectstressesassociationhypothesizedHowevermajorlimitationinvestigatinglarge-scalepatternsliststolerantincompleteexploresassessedMETHODS:ExtensiveusedtogethervaluespHelectricalconductivityexposeddistributionsUsingparametricphylogeny-correctedtestspredictionsevaluatedlistcontroldeterminedKEYRESULTS:showngenerahigherAdditionallyoccurringtendCONCLUSIONS:Geochemicalpotentiallyusefulapproachrelativechallengingfindingsdemonstrateinvestigationsconsiderphylogeneticspecificinvolvedecophysiologicalstrategiesideallyincorporatingcompletefiner-scaleinformationwelllaboratoryexperimentsPredictingmodelling:Poaceaemacroevolutionphylogenystressresistancesyndrome

Similar Articles

Cited By