Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.

Regina S Salvat, Andrew S Parker, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E Griswold
Author Information
  1. Regina S Salvat: Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America.
  2. Andrew S Parker: Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America.
  3. Yoonjoo Choi: Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America.
  4. Chris Bailey-Kellogg: Department of Computer Science, Dartmouth, Hanover, New Hampshire, United States of America.
  5. Karl E Griswold: Thayer School of Engineering, Dartmouth, Hanover, New Hampshire, United States of America; Program in Molecular and Cellular Biology, Dartmouth, Hanover, New Hampshire, United States of America.

Abstract

The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts.

References

  1. J Vis Exp. 2014;(85). doi: 10.3791/51308 [PMID: 24686319]
  2. J Immunol. 2005 Mar 15;174(6):3187-96 [PMID: 15749848]
  3. Proteins. 2012 Mar;80(3):790-806 [PMID: 22180081]
  4. Clin Dev Immunol. 2013;2013:467852 [PMID: 24222776]
  5. BMC Bioinformatics. 2007;8:238 [PMID: 17608956]
  6. J Comput Biol. 2013 Feb;20(2):152-65 [PMID: 23384000]
  7. PLoS Comput Biol. 2008 Apr;4(4):e1000048 [PMID: 18389056]
  8. Trends Immunol. 2007 Nov;28(11):482-90 [PMID: 17964218]
  9. Vaccine. 2009 Oct 30;27(46):6471-9 [PMID: 19559119]
  10. J Bioinform Comput Biol. 2011 Apr;9(2):207-29 [PMID: 21523929]
  11. Cell Mol Life Sci. 2014 Dec;71(24):4869-80 [PMID: 24880662]
  12. Drug Discov Today. 2011 Apr;16(7-8):345-53 [PMID: 21300174]
  13. Drugs R D. 2008;9(6):385-96 [PMID: 18989990]
  14. J Immunol. 2002 Nov 1;169(9):5098-108 [PMID: 12391226]
  15. BMC Bioinformatics. 2010;11:180 [PMID: 20380721]
  16. BMC Bioinformatics. 2006;7:463 [PMID: 17059589]
  17. Bioinformatics. 2001 Dec;17(12):1236-7 [PMID: 11751237]
  18. Annu Rev Immunol. 2005;23:975-1028 [PMID: 15771591]
  19. Discov Med. 2010 Jun;9(49):560-4 [PMID: 20587346]
  20. Self Nonself. 2010 Oct;1(4):314-322 [PMID: 21487506]
  21. J Immunother. 2009 Jul-Aug;32(6):574-84 [PMID: 19483652]
  22. Curr Drug Targets. 2009 Feb;10(2):131-9 [PMID: 19199909]
  23. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1272-7 [PMID: 21209329]
  24. Arthritis Res Ther. 2003;5(1):R40-8 [PMID: 12716452]
  25. Immunome Res. 2010 Nov 13;6:9 [PMID: 21073747]
  26. Mol Cancer Ther. 2005 Nov;4(11):1791-800 [PMID: 16276001]
  27. Dev Biol (Basel). 2005;122:171-94 [PMID: 16375261]
  28. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):E3597-603 [PMID: 23213206]
  29. BMC Bioinformatics. 2009;10:296 [PMID: 19765293]
  30. J Exp Med. 2006 Apr 17;203(4):961-71 [PMID: 16585267]
  31. Protein Eng Des Sel. 2012 Oct;25(10):613-23 [PMID: 22898588]
  32. Nat Biotechnol. 2014 Jan;32(1):32-9 [PMID: 24406926]
  33. J Immunol. 1998 Apr 1;160(7):3363-73 [PMID: 9531296]
  34. J Comput Chem. 2013 Apr 5;34(10):879-91 [PMID: 23299435]
  35. Immunogenetics. 2005 Jun;57(5):304-14 [PMID: 15868141]
  36. Nat Med. 2012 May;18(5):636 [PMID: 22561805]
  37. Clin Immunol. 2009 May;131(2):189-201 [PMID: 19269256]
  38. Nat Biotechnol. 1999 Jun;17(6):555-61 [PMID: 10385319]
  39. Curr Opin Drug Discov Devel. 2007 May;10(3):332-40 [PMID: 17554860]
  40. Proteins. 1988;4(2):99-122 [PMID: 3227018]
  41. Thromb Haemost. 2002 Apr;87(4):666-73 [PMID: 12008950]
  42. Clin Immunol. 2012 Mar;142(3):320-31 [PMID: 22222093]
  43. Appl Bioinformatics. 2003;2(1):63-6 [PMID: 15130834]
  44. J Immunol. 2004 Jun 1;172(11):6658-65 [PMID: 15153481]

Grants

  1. R01 GM098977/NIGMS NIH HHS
  2. R01-GM-098977/NIGMS NIH HHS

MeSH Term

Algorithms
Computational Biology
Computer Simulation
Epitopes, T-Lymphocyte
Humans
Models, Statistical
Protein Binding
Protein Engineering
Recombinant Proteins

Chemicals

Epitopes, T-Lymphocyte
Recombinant Proteins

Word Cloud

Created with Highcharts 10.0.0designspacedeimmunizationproteinParetoimmunogenicityalgorithmsepitopefunctionsingletradeoffsfrontierperformancefunctionaldeimmunizedbiotherapeuticbiotherapeuticscanbottleneckdevelopmentpipelinesposesbarrierwidespreadclinicalapplicationresultgrowingneedimprovedtechnologiesrecentlydescribedsimultaneouslyoptimizeproteinsreducedTcellcontenthigh-levelsilicoanalysisdualobjectiverevealsglobaloptimumrespectInsteadmutagenicdeletionyieldsspectrumdesignsexhibitimmunogenicpotentialmolecularleadingedgeieundominatedvariantsexhibitsbettercriteriatherapeuticenzymedesignedconstructedevaluatedexperimentallyVariousmeasuresfoundmapsequencecorrelatedwellcomputationalpredictionsresultsrepresentfirstsystematicrigorousassessmentpenaltymustpaidpursuingprogressivelycandidatesGivencapacityrapidlyassessfunctionalitymayproveusefulaugmentingacceleratingde-riskingexperimentaleffortsMappingoptimalfunctionallycandidate

Similar Articles

Cited By