Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach.

Kyung Dae Ko, Tarek El-Ghazawi, Dongkyu Kim, Hiroki Morizono, Pooled Resource Open-Access ALS Clinical Trials Consortium
Author Information
  1. Kyung Dae Ko: High-Performance Computing Laboratory (HPCL), The George Washington University, Ashburn, VA, United States.
  2. Tarek El-Ghazawi: High-Performance Computing Laboratory (HPCL), The George Washington University, Ashburn, VA, United States.
  3. Dongkyu Kim: Center for Translational Science, Children's National Medical Center, Washington DC, United States.
  4. Hiroki Morizono: Center for Genetic Medicine, Children's National Medical Center, Washington DC, United States.

Abstract

Motor neuron diseases (MNDs) are a class of progressive neurological diseases that damage the motor neurons. An accurate diagnosis is important for the treatment of patients with MNDs because there is no standard cure for the MNDs. However, the rates of false positive and false negative diagnoses are still very high in this class of diseases. In the case of Amyotrophic Lateral Sclerosis (ALS), current estimates indicate 10% of diagnoses are false-positives, while 44% appear to be false negatives. In this study, we developed a new methodology to profile specific medical information from patient medical records for predicting the progression of motor neuron diseases. We implemented a system using Hbase and the Random forest classifier of Apache Mahout to profile medical records provided by the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT) site, and we achieved 66% accuracy in the prediction of ALS progress.

Keywords

References

  1. BMC Bioinformatics. 2010 Dec 21;11 Suppl 12:S1 [PMID: 21210976]
  2. Neoplasia. 2011 Sep;13(9):771-83 [PMID: 21969811]
  3. JAAPA. 2006 Jul;19(7):29-35 [PMID: 16869150]
  4. J Gen Intern Med. 2013 Sep;28 Suppl 3:S660-5 [PMID: 23797912]
  5. Neurology. 2006 Mar 14;66(5):624-5 [PMID: 16534097]
  6. J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):1947-58 [PMID: 14632445]
  7. Postgrad Med J. 1992 Jul;68(801):533-7 [PMID: 1437949]

Grants

  1. UL1 TR000075/NCATS NIH HHS

Word Cloud

Created with Highcharts 10.0.0diseasesALSneuronMNDsmotorfalsemedicalclassdiagnosesprofilerecordsprogressionusingHbaseMahoutdatacomputingBigMotorprogressiveneurologicaldamageneuronsaccuratediagnosisimportanttreatmentpatientsstandardcureHoweverratespositivenegativestillhighcaseAmyotrophicLateralSclerosiscurrentestimatesindicate10%false-positives44%appearnegativesstudydevelopednewmethodologyspecificinformationpatientpredictingimplementedsystemRandomforestclassifierApacheprovidedPooledResourceOpen-AccessClinicalTrialsDatabasePRO-ACTsiteachieved66%accuracypredictionprogressPredictingseveritydiseaseelectronichealthrecordcloudDataapproachCloudMedicaldecisionsupportsytemRandomforest

Similar Articles

Cited By