Integrated modeling of protein-coding genes in the Manduca sexta genome using RNA-Seq data from the biochemical model insect.

Xiaolong Cao, Haobo Jiang
Author Information
  1. Xiaolong Cao: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
  2. Haobo Jiang: Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA. Electronic address: haobo.jiang@okstate.edu.

Abstract

The genome sequence of Manduca sexta was recently determined using 454 technology. Cufflinks and MAKER2 were used to establish gene models in the genome assembly based on the RNA-Seq data and other species' sequences. Aided by the extensive RNA-Seq data from 50 tissue samples at various life stages, annotators over the world (including the present authors) have manually confirmed and improved a small percentage of the models after spending months of effort. While such collaborative efforts are highly commendable, many of the predicted genes still have problems which may hamper future research on this insect species. As a biochemical model representing lepidopteran pests, M. sexta has been used extensively to study insect physiological processes for over five decades. In this work, we assembled Manduca datasets Cufflinks 3.0, Trinity 4.0, and Oases 4.0 to assist the manual annotation efforts and development of Official Gene Set (OGS) 2.0. To further improve annotation quality, we developed methods to evaluate gene models in the MAKER2, Cufflinks, Oases and Trinity assemblies and selected the best ones to constitute MCOT 1.0 after thorough crosschecking. MCOT 1.0 has 18,089 genes encoding 31,666 proteins: 32.8% match OGS 2.0 models perfectly or near perfectly, 11,747 differ considerably, and 29.5% are absent in OGS 2.0. Future automation of this process is anticipated to greatly reduce human efforts in generating comprehensive, reliable models of structural genes in other genome projects where extensive RNA-Seq data are available.

Keywords

References

  1. Genome Biol. 2011;12(3):R22 [PMID: 21410973]
  2. BMC Bioinformatics. 2009;10:421 [PMID: 20003500]
  3. Nat Methods. 2012 Apr;9(4):357-9 [PMID: 22388286]
  4. Bioinformatics. 2012 Apr 15;28(8):1086-92 [PMID: 22368243]
  5. Nat Rev Genet. 2012 May;13(5):329-42 [PMID: 22510764]
  6. Dev Comp Immunol. 2013 Apr;39(4):388-98 [PMID: 23178408]
  7. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  8. Insect Biochem Mol Biol. 2015 Jul;62:51-63 [PMID: 25530503]
  9. Insect Biochem Mol Biol. 2000 Jan;30(1):19-27 [PMID: 10646967]
  10. Insect Biochem Mol Biol. 2008 Jun;38(6):677-82 [PMID: 18510979]
  11. Insect Biochem Mol Biol. 2011 Sep;41(9):733-46 [PMID: 21641996]
  12. Nat Biotechnol. 2011 Jul;29(7):644-52 [PMID: 21572440]
  13. Insect Mol Biol. 2010 Feb;19(1):61-75 [PMID: 19909380]
  14. Adv Exp Med Biol. 2010;708:181-204 [PMID: 21528699]
  15. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7449-54 [PMID: 21498690]
  16. Insect Biochem Mol Biol. 2003 Dec;33(12):1327-38 [PMID: 14599504]
  17. Microsc Res Tech. 2001 Dec 1;55(5):307-29 [PMID: 11754510]
  18. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  19. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  20. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  21. Nat Protoc. 2012 Mar;7(3):562-78 [PMID: 22383036]

Grants

  1. R37 GM041247/NIGMS NIH HHS
  2. GM58634/NIGMS NIH HHS
  3. R01 GM058634/NIGMS NIH HHS
  4. R01 GM041247/NIGMS NIH HHS
  5. GM41247/NIGMS NIH HHS

MeSH Term

Animals
Genes, Insect
Genome, Insect
Insect Proteins
Manduca
Models, Genetic
Molecular Sequence Annotation
Sequence Analysis, RNA
Software

Chemicals

Insect Proteins

Word Cloud

Created with Highcharts 10.0.00modelsgenomeRNA-SeqdatagenesManducasextaCufflinksgeneeffortsinsectannotationOGS2usingMAKER2usedassemblyextensivebiochemicalmodelTrinity4OasesGeneMCOT1perfectlymodelingsequencerecentlydetermined454technologyestablishbasedspecies'sequencesAided50tissuesamplesvariouslifestagesannotatorsworldincludingpresentauthorsmanuallyconfirmedimprovedsmallpercentagespendingmonthseffortcollaborativehighlycommendablemanypredictedstillproblemsmayhamperfutureresearchspeciesrepresentinglepidopteranpestsMextensivelystudyphysiologicalprocessesfivedecadesworkassembleddatasets3assistmanualdevelopmentOfficialSetimprovequalitydevelopedmethodsevaluateassembliesselectedbestonesconstitutethoroughcrosschecking18089encoding31666proteins:328%matchnear11747differconsiderably295%absentFutureautomationprocessanticipatedgreatlyreducehumangeneratingcomprehensivereliablestructuralprojectsavailableIntegratedprotein-codingArthropodgenomicsAutomatedTobaccohornwormdenovo

Similar Articles

Cited By