Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes.

Franklin F Duan, Joy H Liu, John C March
Author Information
  1. Franklin F Duan: Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY.
  2. Joy H Liu: Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY.
  3. John C March: Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY jcm224@cornell.edu.

Abstract

The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1-secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25-33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)-secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo.

References

  1. Trends Biotechnol. 2003 Nov;21(11):491-7 [PMID: 14573362]
  2. Neurogastroenterol Motil. 2007 Mar;19(3):166-72 [PMID: 17300285]
  3. Allergy. 2006 Jul;61(7):812-9 [PMID: 16792578]
  4. Nature. 2008 Oct 2;455(7213):627-32 [PMID: 18754011]
  5. Biotechnol Bioeng. 2008 Sep 1;101(1):128-34 [PMID: 18433007]
  6. Gut. 2006 Aug;55(8):1090-4 [PMID: 16507583]
  7. Science. 2001 May 18;292(5520):1389-94 [PMID: 11326082]
  8. Nat Rev Immunol. 2004 Dec;4(12):953-64 [PMID: 15573130]
  9. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):998-1003 [PMID: 12525695]
  10. Microb Cell Fact. 2007 Apr 06;6:12 [PMID: 17417967]
  11. J Appl Microbiol. 2005;98(5):1191-7 [PMID: 15836489]
  12. Exp Clin Endocrinol Diabetes. 2007 Nov;115(10):654-61 [PMID: 18058600]
  13. Appl Environ Microbiol. 2008 Dec;74(23):7437-8 [PMID: 18836005]
  14. Diabetes. 2001 Aug;50(8):1691-7 [PMID: 11473026]
  15. Gastroenterology. 2007 May;132(6):2131-57 [PMID: 17498508]
  16. Nat Med. 2000 May;6(5):568-72 [PMID: 10802714]
  17. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16105-10 [PMID: 12441403]
  18. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7253-8 [PMID: 12756298]
  19. Curr Opin Biotechnol. 2012 Dec;23(6):924-30 [PMID: 22459613]
  20. Dev Biol. 2003 Jun 1;258(1):105-16 [PMID: 12781686]
  21. Endocr J. 2007 Feb;54(1):7-16 [PMID: 17053295]
  22. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2376-81 [PMID: 22308370]
  23. FEMS Immunol Med Microbiol. 2005 Mar 1;43(3):373-84 [PMID: 15708311]
  24. Gene Expr Patterns. 2006 Apr;6(4):426-32 [PMID: 16377257]
  25. Gastroenterology. 2006 May;130(6):1915-6 [PMID: 16697754]
  26. Curr Opin Biotechnol. 2012 Oct;23(5):773-9 [PMID: 22285057]
  27. Endocrinology. 2009 Apr;150(4):1627-35 [PMID: 19095744]
  28. Diabetes. 2006 Jan;55(1):61-9 [PMID: 16380477]
  29. Development. 2000 Jul;127(13):2883-95 [PMID: 10851133]
  30. Genes Dev. 2008 Dec 15;22(24):3435-48 [PMID: 19141476]
  31. Diabetes. 2002 Aug;51(8):2546-51 [PMID: 12145169]
  32. Dev Biol. 2003 Jul 1;259(1):109-22 [PMID: 12812792]
  33. Methods Enzymol. 2003;365:287-303 [PMID: 14696354]
  34. Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13426-31 [PMID: 20616080]
  35. Diabetes. 2000 Feb;49(2):157-62 [PMID: 10868930]
  36. J Nutr. 2007 Mar;137(3 Suppl 2):781S-90S [PMID: 17311975]
  37. Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5034-9 [PMID: 12702762]

Grants

  1. DP2 OD007155/NIH HHS
  2. R41 DK094638/NIDDK NIH HHS
  3. 1R41DK094638-01A1/NIDDK NIH HHS

MeSH Term

Animals
Cell Line
Cellular Reprogramming
Diabetes Mellitus
Diabetes Mellitus, Experimental
Epithelial Cells
Female
Gene Expression Regulation
Genetic Engineering
Glucagon-Like Peptide 1
Glucose
Humans
Insulin
Insulin Secretion
Intestinal Mucosa
Lactobacillus
Rats

Chemicals

Insulin
Glucagon-Like Peptide 1
Glucose

Word Cloud

Created with Highcharts 10.0.0cellsratsGLP-11-37bacteriahumanintestinalinsulin-secretingcommensalengineereddiabetesfedinsulinratoralsecreteglucose-responsiveDiabeticbacterialreprogrammedepitheliacellfunctiontreatmentinactivefull-lengthformstimulatesconversionepithelialinvestigatedwhetheradministrationamelioratehyperglycemiamodelreprogrammingdailylactobacilliGLP-1-secretingshowedsignificantincreaseslevelsadditionallysignificantlyglucosetolerantparentstraindevelopedinsulin-producingwithinupperintestinenumberssufficientreplace∼25-33%capacitynondiabetichealthyIntestinaltissuesexpressedMafAPDX-1FoxA2HNF-6expressionobservedcryptexpressinglocatedhighervillousaxisStainingmarkerstreated-secretingsuggestednormalinhibitedclosephysicalproximityresultsprovideevidencepotentialsafeeffectivenonabsorbedsupportconceptsignalingmediateentericvivoEngineeredreprogram

Similar Articles

Cited By