The avian transcriptome response to malaria infection.

Elin Videvall, Charlie K Cornwallis, Vaidas Palinauskas, Gediminas Valkiūnas, Olof Hellgren
Author Information
  1. Elin Videvall: Department of Biology, Lund University, Lund, Sweden elin.videvall@biol.lu.se olof.hellgren@biol.lu.se.
  2. Charlie K Cornwallis: Department of Biology, Lund University, Lund, Sweden.
  3. Vaidas Palinauskas: Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.
  4. Gediminas Valkiūnas: Institute of Ecology, Nature Research Centre, Vilnius, Lithuania.
  5. Olof Hellgren: Department of Biology, Lund University, Lund, Sweden elin.videvall@biol.lu.se olof.hellgren@biol.lu.se.

Abstract

Malaria parasites are highly virulent pathogens which infect a wide range of vertebrates. Despite their importance, the way different hosts control and suppress malaria infections remains poorly understood. With recent developments in next-generation sequencing techniques, however, it is now possible to quantify the response of the entire transcriptome to infections. We experimentally infected Eurasian siskins (Carduelis spinus) with avian malaria parasites (Plasmodium ashfordi), and used high-throughput RNA-sequencing to measure the avian transcriptome in blood collected before infection (day 0), during peak parasitemia (day 21 postinfection), and when parasitemia was decreasing (day 31). We found considerable differences in the transcriptomes of infected and uninfected individuals, with a large number of genes differentially expressed during both peak and decreasing parasitemia stages. These genes were overrepresented among functions involved in the immune system, stress response, cell death regulation, metabolism, and telomerase activity. Comparative analyses of the differentially expressed genes in our study to those found in other hosts of malaria (human and mouse) revealed a set of genes that are potentially involved in highly conserved evolutionary responses to malaria infection. By using RNA-sequencing we gained a more complete view of the host response, and were able to pinpoint not only well-documented host genes but also unannotated genes with clear significance during infection, such as microRNAs. This study shows how the avian blood transcriptome shifts in response to malaria infection, and we believe that it will facilitate further research into the diversity of molecular mechanisms that hosts utilize to fight malaria infections.

Keywords

References

  1. J Cell Biol. 2011 Dec 12;195(6):931-42 [PMID: 22123830]
  2. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  3. Parasitology. 1995;111 Suppl:S59-69 [PMID: 8632925]
  4. Nat Rev Genet. 2009 Jan;10(1):57-63 [PMID: 19015660]
  5. Nat Protoc. 2007;2(10):2366-82 [PMID: 17947979]
  6. Free Radic Res. 1999 Oct;31(4):273-300 [PMID: 10517533]
  7. J Am Vet Med Assoc. 1994 Feb 1;204(3):427-9 [PMID: 8150703]
  8. Cell Host Microbe. 2012 Aug 16;12(2):187-99 [PMID: 22901539]
  9. Parasit Vectors. 2010 Feb 01;3(1):5 [PMID: 20205846]
  10. RNA Biol. 2012 Jun;9(6):742-50 [PMID: 22664920]
  11. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  12. Ecology. 2009 Oct;90(10):2840-9 [PMID: 19886492]
  13. Parasitol Res. 2007 May;100(6):1311-22 [PMID: 17235548]
  14. Cell. 2009 Jan 9;136(1):26-36 [PMID: 19135886]
  15. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  16. Chem Res Toxicol. 1997 Jan;10(1):2-18 [PMID: 9074797]
  17. Mol Microbiol. 2005 Nov;58(3):731-42 [PMID: 16238623]
  18. Nature. 2010 Apr 1;464(7289):757-62 [PMID: 20360741]
  19. Genome Biol. 2010;11(12):220 [PMID: 21176179]
  20. PLoS One. 2012;7(3):e32694 [PMID: 22396790]
  21. Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16786-93 [PMID: 22949651]
  22. Clin Biochem. 1997 Dec;30(8):631-9 [PMID: 9455617]
  23. Int J Parasitol. 2004 Feb;34(2):163-89 [PMID: 15037104]
  24. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  25. J Avian Med Surg. 2009 Mar;23(1):53-63 [PMID: 19530408]
  26. Proc Natl Acad Sci U S A. 1985 Jan;82(2):548-51 [PMID: 3855565]
  27. Cell Host Microbe. 2010 Jul 22;8(1):44-54 [PMID: 20638641]
  28. Nucleic Acids Res. 2013 Jan;41(Database issue):D48-55 [PMID: 23203987]
  29. Bioinformatics. 2005 Aug 15;21(16):3448-9 [PMID: 15972284]
  30. Biochem Biophys Res Commun. 2007 Apr 6;355(2):592-6 [PMID: 17306223]
  31. Genome Biol. 2013;14(4):R36 [PMID: 23618408]
  32. Trends Immunol. 2008 Jul;29(7):343-51 [PMID: 18515182]
  33. J Proteome Res. 2008 Sep;7(9):3948-56 [PMID: 18646786]
  34. Exp Parasitol. 1973 Feb;33(1):79-88 [PMID: 4691929]
  35. Autoimmun Rev. 2009 May;8(6):520-4 [PMID: 19200459]
  36. Malar J. 2011;10:384 [PMID: 22196439]
  37. Trends Parasitol. 2011 Nov;27(11):481-6 [PMID: 21840260]
  38. Trends Ecol Evol. 2010 May;25(5):283-91 [PMID: 20363047]
  39. Evolution. 2004 Jul;58(7):1617-21 [PMID: 15341164]
  40. Proc Biol Sci. 2002 May 7;269(1494):885-92 [PMID: 12028770]
  41. Exp Parasitol. 2011 Feb;127(2):527-33 [PMID: 21050849]
  42. J Parasitol. 2008 Dec;94(6):1395-401 [PMID: 18576856]
  43. Trends Parasitol. 2010 Jan;26(1):11-5 [PMID: 19932638]
  44. Exp Parasitol. 2008 Dec;120(4):372-80 [PMID: 18809402]
  45. BMC Genomics. 2009;10:270 [PMID: 19534804]
  46. Nat Methods. 2012 Apr;9(4):357-9 [PMID: 22388286]
  47. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):71-83 [PMID: 18930878]
  48. Int J Parasitol. 2004 Dec;34(13-14):1501-16 [PMID: 15582527]
  49. Int J Parasitol. 2010 Oct;40(12):1447-53 [PMID: 20570591]
  50. Nat Rev Microbiol. 2012 Sep;10(9):618-30 [PMID: 22890146]
  51. Cell. 2001 Nov 2;107(3):347-59 [PMID: 11701125]
  52. J Anim Ecol. 2007 Jan;76(1):112-22 [PMID: 17184359]
  53. Gen Comp Endocrinol. 2009 Jan 1;160(1):76-83 [PMID: 19026651]
  54. Pharmacology. 2000 Sep;61(3):154-66 [PMID: 10971201]
  55. J Parasitol. 2004 Aug;90(4):797-802 [PMID: 15357072]
  56. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  57. J Wildl Dis. 2000 Apr;36(2):197-204 [PMID: 10813599]
  58. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):37-49 [PMID: 18926971]
  59. Mol Ecol Resour. 2009 Sep;9(5):1353-8 [PMID: 21564906]
  60. BMC Ecol. 2013;13:15 [PMID: 23565726]
  61. Genome Biol. 2014;15(12):550 [PMID: 25516281]

MeSH Term

Animals
Gene Expression Regulation
Malaria, Avian
MicroRNAs
Passeriformes
Plasmodium
Transcriptome

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0malariaresponseinfectiongenestranscriptomeavianhostsinfectionsdayparasitemiahostparasiteshighlyinfectedPlasmodiumRNA-sequencingbloodpeakdecreasingfounddifferentiallyexpressedinvolvedimmunestudyMalariavirulentpathogensinfectwiderangevertebratesDespiteimportancewaydifferentcontrolsuppressremainspoorlyunderstoodrecentdevelopmentsnext-generationsequencingtechniqueshowevernowpossiblequantifyentireexperimentallyEurasiansiskinsCarduelisspinusashfordiusedhigh-throughputmeasurecollected021postinfection31considerabledifferencestranscriptomesuninfectedindividualslargenumberstagesoverrepresentedamongfunctionssystemstresscelldeathregulationmetabolismtelomeraseactivityComparativeanalyseshumanmouserevealedsetpotentiallyconservedevolutionaryresponsesusinggainedcompleteviewablepinpointwell-documentedalsounannotatedclearsignificancemicroRNAsshowsshiftsbelievewillfacilitateresearchdiversitymolecularmechanismsutilizefightRNA-seqexperimentaldefense

Similar Articles

Cited By