Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant.

Caroline Vignet, Lucette Joassard, Laura Lyphout, Tiphaine Guionnet, Manon Goubeau, Karyn Le Menach, François Brion, Olivier Kah, Bon-Chu Chung, Hélène Budzinski, Marie-Laure Bégout, Xavier Cousin
Author Information
  1. Caroline Vignet: Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
  2. Lucette Joassard: Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
  3. Laura Lyphout: Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
  4. Tiphaine Guionnet: Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
  5. Manon Goubeau: Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
  6. Karyn Le Menach: University of Bordeaux 1, EPOC, UMR CNRS 5805, 33405, Talence, France.
  7. François Brion: Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, INERIS, 60550, Verneuil-en-Halatte, France.
  8. Olivier Kah: INSERM U1085, Research Institute in Health, Environment and Occupation, Team NEED, Case 1302Université de Rennes 1 Campus de Beaulieu, 35 042, Rennes cedex, France.
  9. Bon-Chu Chung: Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
  10. Hélène Budzinski: University of Bordeaux 1, EPOC, UMR CNRS 5805, 33405, Talence, France.
  11. Marie-Laure Bégout: Fisheries laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France.
  12. Xavier Cousin: Ecotoxicology Laboratory, Ifremer, Place Gaby Coll, BP7, 17137, L'Houmeau, France. xcousin@ifremer.fr.

Abstract

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet.

Keywords

References

  1. Neurochem Int. 2011 Jan;58(1):69-77 [PMID: 21056608]
  2. Environ Sci Pollut Res Int. 2014 Dec;21(24):13888-97 [PMID: 24994101]
  3. Sci Total Environ. 2010 Jul 1;408(15):2995-3043 [PMID: 19910021]
  4. Am J Epidemiol. 2010 Mar 1;171(5):593-601 [PMID: 20106937]
  5. Mar Pollut Bull. 2008 Dec;56(12):2067-81 [PMID: 18835610]
  6. Neurotoxicology. 2009 Jan;30(1):52-8 [PMID: 18952124]
  7. J Exp Biol. 2007 Jul;210(Pt 14):2526-39 [PMID: 17601957]
  8. Environ Sci Pollut Res Int. 2014 Dec;21(24):13804-17 [PMID: 24652572]
  9. Environ Toxicol Pharmacol. 2013 Jul;36(1):40-50 [PMID: 23542452]
  10. Ecotoxicology. 2011 Nov;20(8):1813-22 [PMID: 21695510]
  11. Toxicol Sci. 2014 Apr;138(2):403-11 [PMID: 24470537]
  12. Environ Sci Pollut Res Int. 2014 Dec;21(24):13833-49 [PMID: 24777325]
  13. Behav Brain Res. 2012 Mar 17;228(2):272-83 [PMID: 22138507]
  14. PLoS One. 2012;7(5):e36069 [PMID: 22586461]
  15. Front Neuroendocrinol. 2007 Oct;28(4):179-200 [PMID: 17868795]
  16. Aquat Toxicol. 2004 Jul 14;68(4):369-92 [PMID: 15177953]
  17. Behav Brain Res. 2009 Dec 14;205(1):38-44 [PMID: 19540270]
  18. Environ Sci Pollut Res Int. 2014 Dec;21(24):13720-31 [PMID: 24687795]
  19. Environ Res. 2008 Oct;108(2):205-13 [PMID: 18768175]
  20. Physiol Behav. 2007 Jan 30;90(1):54-8 [PMID: 17049956]
  21. Int J Comp Psychol. 2010 Jan 1;23(1):43-61 [PMID: 20523756]
  22. Behav Brain Res. 2012 Mar 17;228(2):367-74 [PMID: 22197677]
  23. Environ Sci Pollut Res Int. 2014 Dec;21(24):13732-43 [PMID: 24595754]
  24. Aquat Toxicol. 2006 Aug 12;79(1):55-64 [PMID: 16780971]
  25. Neurotoxicol Teratol. 2000 Jan-Feb;22(1):21-9 [PMID: 10642111]
  26. Neurotoxicol Teratol. 2013 Sep-Oct;39:45-56 [PMID: 23851001]
  27. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Aug 1;35(6):1432-51 [PMID: 20971150]
  28. Chemosphere. 2012 Mar;86(9):926-37 [PMID: 22154001]
  29. Aquat Toxicol. 2011 Oct;105(3-4):270-8 [PMID: 21777556]
  30. Environ Sci Technol. 2013 Jun 18;47(12 ):6415-24 [PMID: 23659377]
  31. J Vis Exp. 2008 Oct 03;(20):null [PMID: 19078942]
  32. Aquat Toxicol. 2006 Sep 12;79(3):257-67 [PMID: 16887205]
  33. Dev Dyn. 2001 Dec;222(4):645-54 [PMID: 11748833]
  34. Ecotoxicol Environ Saf. 2009 Jan;72(1):191-8 [PMID: 18462795]
  35. Gen Comp Endocrinol. 2012 Sep 1;178(2):282-90 [PMID: 22687331]
  36. Endocrinology. 2006 Jun;147(6 Suppl):S43-9 [PMID: 16690803]
  37. Genesis. 2009 Feb;47(2):67-73 [PMID: 19101983]
  38. Environ Health Perspect. 2012 Jun;120(6):921-6 [PMID: 22440811]
  39. Comp Biochem Physiol B Biochem Mol Biol. 2002 Sep;133(1):55-68 [PMID: 12223212]
  40. Aquat Toxicol. 2008 Feb 18;86(3):341-51 [PMID: 18180048]
  41. Comp Biochem Physiol C Toxicol Pharmacol. 2014 Jun;163:37-46 [PMID: 24576477]
  42. Aquat Toxicol. 2011 Sep;105(1-2):41-8 [PMID: 21684240]
  43. Environ Sci Pollut Res Int. 2014 Dec;21(24):13818-32 [PMID: 24671398]
  44. Behav Brain Res. 2010 Apr 2;208(2):371-6 [PMID: 20006651]
  45. Steroids. 2012 Jan;77(1-2):27-35 [PMID: 22108547]
  46. Environ Res. 2008 Oct;108(2):150-7 [PMID: 18949834]
  47. Sci Total Environ. 2009 Dec 20;408(2):304-11 [PMID: 19875155]
  48. Gen Comp Endocrinol. 2013 Sep 1;190:194-202 [PMID: 23773971]
  49. Environ Monit Assess. 2007 Jan;124(1-3):167-94 [PMID: 16957861]
  50. Toxicol Appl Pharmacol. 2004 May 15;197(1):49-65 [PMID: 15126074]
  51. Arch Environ Contam Toxicol. 2012 Feb;62(2):282-95 [PMID: 21894559]
  52. Int J Occup Med Environ Health. 2003;16(1):21-9 [PMID: 12705714]
  53. Toxicol Lett. 2013 Jul 31;221(1):40-6 [PMID: 23742931]
  54. Gen Comp Endocrinol. 2008 Sep 15;158(3):234-9 [PMID: 18671977]
  55. Chemosphere. 2007 Dec;70(2):270-80 [PMID: 17669464]
  56. Toxicol Lett. 2012 Jun 1;211(2):105-13 [PMID: 22450773]
  57. Environ Sci Technol. 2009 Feb 15;43(4):1219-25 [PMID: 19320183]
  58. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009 Oct;27(4):286-300 [PMID: 19953400]
  59. Environ Sci Technol. 2009 Dec 1;43(23 ):9010-5 [PMID: 19943681]
  60. Environ Health Perspect. 2010 Sep;118(9):1326-31 [PMID: 20406721]
  61. BMC Genomics. 2011 Jan 04;12:3 [PMID: 21205313]
  62. Environ Health Perspect. 2008 May;116(5):674-9 [PMID: 18470301]
  63. Zebrafish. 2013 Sep;10(3):365-75 [PMID: 23738739]
  64. Environ Sci Pollut Res Int. 2014 Dec;21(24):13877-87 [PMID: 24659400]

MeSH Term

Animals
Anxiety
Aromatase
Diet
Endocrine Disruptors
Genomic Imprinting
Larva
Motor Activity
Petroleum Pollution
Polycyclic Aromatic Hydrocarbons
Swimming
Water Pollutants, Chemical
Zebrafish
Zebrafish Proteins

Chemicals

Endocrine Disruptors
Polycyclic Aromatic Hydrocarbons
Water Pollutants, Chemical
Zebrafish Proteins
Aromatase

Word Cloud

Created with Highcharts 10.0.0observedactivitymixtureoildisruptionsPAHsconcentrationsfishissuedexposeddietPAHmixtureslarvaeoffspringaromaticcansedimentsanalyzedphysiologicalunexposedF1threeenvironmentallyrelevantlocomotorPYLOF2releasepolycyclichydrocarbonsenvironmentincreasedsubstantiallylastdecadeshydrophobicmoleculesaccumulatehighactingmajorsecondarysourcesFishcontaminationoccurcontactresidencenearbythoughdietaryexposurestudycertaintraitsparentsF0similardifferingcompositionsmorphologicaldifferencesincreasehighestconcentrationpyrolyticcontrarydecreaseheavyHOcasethirdlightreductiondiurnalsetuplarvalBehavioralpersistedF1-PYjuvenilesEndocrinedisruptionusingcyp19a1b:GFPtransgeniclinerevealedSincemetabolitesdosedfindingssuggestpossibleunderlyingmechanismsalteredparentalsignalingmoleculeand/orhormonetransferredgameteseventuallyleadingearlyimprintingTakentogetherresultsindicateExposureszebrafishproducebehavioraldescendantAnxiety-likebehaviorDaniorerioHeavyLightcrudeLocomotorOffspringPhotomotorresponsePolycyclichydrocarbonTransgenerationaleffect

Similar Articles

Cited By (10)