A practical guide for using registry data to inform decisions about the cost effectiveness of new cancer drugs: lessons learned from the PHAROS registry.

Hedwig M Blommestein, Margreet G Franken, Carin A Uyl-de Groot
Author Information
  1. Hedwig M Blommestein: Department of Health Policy and Management, institute for Medical Technology Assessment, Erasmus University, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.

Abstract

Decision makers increasingly request evidence on the real-world cost effectiveness of a new treatment. There is, however, a lack of practical guidance on how to conduct an economic evaluation based on registry data and how this evidence can be used in actual decision making. This paper explains the required steps on how to perform a sound economic evaluation using examples from an economic evaluation conducted with real-world data from the Dutch Population based HAematological Registry for Observational Studies. There are three main issues related to using registry data: confounding by indication, missing data, and insufficient numbers of (comparable) patients. If encountered, it is crucial to accurately deal with these issues to maximize the internal validity and generalizability of the outcomes and their value to decision makers. Multivariate regression modeling, propensity score matching, and data synthesis are well-established methods to deal with confounding. Multiple imputation methods should be used in cases where data are missing at random. Furthermore, it is important to base the incremental cost-effectiveness ratio of a new treatment compared with its alternative on comparable groups of (matched) patients, even if matching results in a small analytical population. Unmatched real-world data provide insights into the costs and effects of a treatment in a real-world setting. Decision makers should realize that real-world evidence provides extremely valuable and relevant policy information, but needs to be assessed differently compared with evidence derived from a randomized clinical trial.

References

  1. Ann Oncol. 2008 Mar;19(3):570-6 [PMID: 18056649]
  2. Value Health. 2009 Nov-Dec;12(8):1053-61 [PMID: 19744292]
  3. Circulation. 2008 Sep 16;118(12):1294-303 [PMID: 18794402]
  4. JAMA. 2009 Aug 19;302(7):790-1 [PMID: 19690313]
  5. Appl Health Econ Health Policy. 2015 Jun;13(3):303-9 [PMID: 25288052]
  6. JAMA. 2010 Aug 25;304(8):897-8 [PMID: 20736474]
  7. Am J Med. 2010 Dec;123(12 Suppl 1):e16-23 [PMID: 21184862]
  8. Pharmacogenomics. 2011 Mar;12(3):411-21 [PMID: 21449679]
  9. Eur J Cancer. 2011 Sep;47(14):2188-94 [PMID: 21621408]
  10. Eur J Cancer. 2013 Jan;49(1):8-16 [PMID: 22809557]
  11. J Clin Pharm Ther. 2013 Feb;38(1):41-7 [PMID: 23126374]
  12. Value Health. 2013 Mar-Apr;16(2):231-50 [PMID: 23538175]
  13. Pharmacoeconomics. 2013 Aug;31(8):703-18 [PMID: 23657918]
  14. Value Health. 2014 Mar;17(2):143-56 [PMID: 24636373]
  15. Value Health. 2014 Mar;17(2):245-53 [PMID: 24636383]
  16. Eur J Haematol. 2014;92(5):398-406 [PMID: 24400940]
  17. Eur Arch Otorhinolaryngol. 2014 Jun;271(6):1673-8 [PMID: 23907370]
  18. Z Evid Fortbild Qual Gesundhwes. 2014;108(7):358-9, 355-7 [PMID: 25444292]
  19. Z Evid Fortbild Qual Gesundhwes. 2014;108(7):383-9 [PMID: 25444296]
  20. Eur J Cancer Care (Engl). 2015 May;24(3):321-32 [PMID: 24372941]
  21. Pharmacoeconomics. 2008;26(2):131-48 [PMID: 18198933]
  22. Health Policy. 2007 Jan;80(1):135-43 [PMID: 16621124]
  23. J Clin Epidemiol. 2006 Aug;59(8):819-28 [PMID: 16828675]
  24. J Clin Epidemiol. 2006 May;59(5):437-47 [PMID: 16632131]
  25. Pharmacoeconomics. 2006;24(4):355-71 [PMID: 16605282]
  26. Am J Epidemiol. 2006 Feb 1;163(3):262-70 [PMID: 16371515]
  27. Acta Oncol. 2008;47(6):1029-36 [PMID: 18607857]

MeSH Term

Antineoplastic Agents
Cost-Benefit Analysis
Decision Making
Guidelines as Topic
Hematologic Neoplasms
Humans
Netherlands
Quality-Adjusted Life Years
Randomized Controlled Trials as Topic
Registries
State Medicine

Chemicals

Antineoplastic Agents

Word Cloud

Created with Highcharts 10.0.0datareal-worldevidenceregistrymakersnewtreatmenteconomicevaluationusingDecisioncosteffectivenesspracticalbaseduseddecisionissuesconfoundingmissingcomparablepatientsdealmatchingmethodscomparedincreasinglyrequesthoweverlackguidanceconductcanactualmakingpaperexplainsrequiredstepsperformsoundexamplesconductedDutchPopulationHAematologicalRegistryObservationalStudiesthreemainrelateddata:indicationinsufficientnumbersencounteredcrucialaccuratelymaximizeinternalvaliditygeneralizabilityoutcomesvalueMultivariateregressionmodelingpropensityscoresynthesiswell-establishedMultipleimputationcasesrandomFurthermoreimportantbaseincrementalcost-effectivenessratioalternativegroupsmatchedevenresultssmallanalyticalpopulationUnmatchedprovideinsightscostseffectssettingrealizeprovidesextremelyvaluablerelevantpolicyinformationneedsassesseddifferentlyderivedrandomizedclinicaltrialguideinformdecisionscancerdrugs:lessonslearnedPHAROS

Similar Articles

Cited By