The role of leg touchdown for the control of locomotor activity in the walking stick insect.

Joscha Schmitz, Matthias Gruhn, Ansgar Büschges
Author Information
  1. Joscha Schmitz: Department of Animal Physiology, Biocenter, University of Cologne, Köln, Germany.
  2. Matthias Gruhn: Department of Animal Physiology, Biocenter, University of Cologne, Köln, Germany mgruhn@uni-koeln.de.
  3. Ansgar Büschges: Department of Animal Physiology, Biocenter, University of Cologne, Köln, Germany.

Abstract

Much is known on how select sensory feedback contributes to the activation of different motoneuron pools in the locomotor control system of stick insects. However, even though activation of the stance phase muscles depressor trochanteris, retractor unguis, flexor tibiae and retractor coxae is correlated with the touchdown of the leg, the potential sensory basis of this correlation or its connection to burst intensity remains unknown. In our experiments, we are using a trap door setup to investigate how ground contact contributes to stance phase muscle activation and burst intensity in different stick insect species, and which afferent input is involved in the respective changes. While the magnitude of activation is changed in all of the above stance phase muscles, only the timing of the flexor tibiae muscle is changed if the animal unexpectedly steps into a hole. Individual and combined ablation of different force sensors on the leg demonstrated influence from femoral campaniform sensilla on flexor muscle timing, causing a significant increase in the latencies during control and air steps. Our results show that specific load feedback signals determine the timing of flexor tibiae activation at the swing-to-stance transition in stepping stick insects, but that additional feedback may also be involved in flexor muscle activation during stick insect locomotion. With respect to timing, all other investigated stance phase muscles appear to be under sensory control other than that elicited through touchdown.

Keywords

References

  1. J Neurosci. 1988 Nov;8(11):4349-66 [PMID: 2846797]
  2. J Neurophysiol. 2001 Feb;85(2):594-604 [PMID: 11160496]
  3. J Insect Physiol. 2007 Jul;53(7):724-33 [PMID: 17482205]
  4. J Neurobiol. 1995 Aug;27(4):488-512 [PMID: 7561829]
  5. Arthropod Struct Dev. 2004 Jul;33(3):273-86 [PMID: 18089039]
  6. J Neurophysiol. 1994 Feb;71(2):611-22 [PMID: 8176430]
  7. Arthropod Struct Dev. 2013 Nov;42(6):455-67 [PMID: 24126203]
  8. Physiol Rev. 2000 Jan;80(1):83-133 [PMID: 10617766]
  9. Kybernetik. 1967 Aug;4(1):18-26 [PMID: 5600297]
  10. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002 Feb;188(1):55-69 [PMID: 11935230]
  11. Brain Res Rev. 2008 Jan;57(1):222-7 [PMID: 17761295]
  12. J Physiol. 1910 Apr 26;40(1-2):28-121 [PMID: 16993027]
  13. J Neurophysiol. 2009 May;101(5):2297-304 [PMID: 19261716]
  14. Brain Res Brain Res Rev. 1993 May-Aug;18(2):207-26 [PMID: 8339107]
  15. J Neurophysiol. 1985 Jun;53(6):1517-34 [PMID: 4009231]
  16. Arthropod Struct Dev. 2004 Jul;33(3):287-300 [PMID: 18089040]
  17. J Neurophysiol. 2010 Sep;104(3):1681-95 [PMID: 20668273]
  18. J Neurosci Methods. 2006 Dec 15;158(2):195-206 [PMID: 16824615]
  19. Philos Trans A Math Phys Eng Sci. 2007 Jan 15;365(1850):251-71 [PMID: 17148059]
  20. Arthropod Struct Dev. 2014 Sep;43(5):441-55 [PMID: 24951882]
  21. J Neurophysiol. 1999 Feb;81(2):758-70 [PMID: 10036275]
  22. Brain Res Rev. 2008 Jan;57(1):162-71 [PMID: 17888515]
  23. Neuroreport. 2003 Jul 1;14(9):1267-71 [PMID: 12824773]
  24. Ann N Y Acad Sci. 1998 Nov 16;860:110-29 [PMID: 9928306]
  25. Exp Brain Res. 1987;68(3):643-56 [PMID: 3691733]
  26. J Neurophysiol. 2005 Mar;93(3):1255-65 [PMID: 15525808]
  27. Exp Brain Res. 2000 Feb;130(4):417-32 [PMID: 10717785]
  28. Trends Neurosci. 1990 Jan;13(1):15-21 [PMID: 1688670]
  29. J Neurophysiol. 1999 Apr;81(4):1856-65 [PMID: 10200220]
  30. J Neurophysiol. 2005 Mar;93(3):1127-35 [PMID: 15738270]
  31. J Exp Biol. 2013 Mar 15;216(Pt 6):1064-74 [PMID: 23197090]
  32. J Neurophysiol. 2001 Jan;85(1):341-53 [PMID: 11152734]
  33. Biol Cybern. 2011 Dec;105(5-6):399-411 [PMID: 22290138]
  34. J Neurophysiol. 1994 Feb;71(2):603-10 [PMID: 8176429]
  35. J Exp Biol. 1995;198(Pt 2):435-56 [PMID: 9318078]
  36. J Comp Neurol. 2012 Feb 1;520(2):230-57 [PMID: 21618233]
  37. J Comp Physiol A. 1998 Jan;182(1):23-33 [PMID: 9447711]
  38. J Neurosci. 2009 Mar 4;29(9):2972-83 [PMID: 19261892]
  39. Biol Cybern. 1977 Jan 20;25(2):61-72 [PMID: 836915]
  40. J Neurophysiol. 1997 Jun;77(6):3226-36 [PMID: 9212270]
  41. Brain Res. 1972 Dec 12;47(2):492-6 [PMID: 4642575]
  42. Brain Res. 1999 Mar 20;822(1-2):271-5 [PMID: 10082909]
  43. J Neurophysiol. 2003 Mar;89(3):1245-55 [PMID: 12626610]
  44. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Jun;196(6):407-20 [PMID: 20396892]
  45. J Neurosci. 2009 Apr 1;29(13):4109-19 [PMID: 19339606]
  46. Kybernetik. 1973 Jul;13(1):38-53 [PMID: 4747256]
  47. J Neurophysiol. 2007 Sep;98(3):1685-96 [PMID: 17596420]
  48. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Aug;197(8):851-67 [PMID: 21544617]
  49. Brain Res. 1980 Apr 14;187(2):321-32 [PMID: 7370733]
  50. J Neurosci Methods. 2013 May 15;215(2):224-33 [PMID: 23562598]
  51. J Exp Biol. 1995;198(Pt 8):1673-89 [PMID: 9319581]
  52. J Neurosci. 2007 Mar 21;27(12):3285-94 [PMID: 17376989]
  53. J Neurophysiol. 2012 Sep;108(5):1453-72 [PMID: 22673329]
  54. J Neurophysiol. 2004 Jul;92(1):42-51 [PMID: 14999042]
  55. J Comp Physiol A. 1998 Jan;182(1):11-22 [PMID: 9447710]
  56. Cell Tissue Res. 1981;216(1):57-77 [PMID: 7226209]

MeSH Term

Animals
Extremities
Feedback, Physiological
Female
Gait
Insecta
Muscle Contraction
Muscle, Skeletal
Touch
Walking
Weight-Bearing

Word Cloud

Created with Highcharts 10.0.0activationcontrolstickflexorsensorystancephasemuscletimingfeedbackdifferentmusclestibiaetouchdownleginsectcontributeslocomotorinsectsretractorburstintensityspeciesinvolvedchangedstepscampaniformsensillaloadlocomotionMuchknownselectmotoneuronpoolssystemHowevereventhoughdepressortrochanterisunguiscoxaecorrelatedpotentialbasiscorrelationconnectionremainsunknownexperimentsusingtrapdoorsetupinvestigategroundcontactafferentinputrespectivechangesmagnitudeanimalunexpectedlyholeIndividualcombinedablationforcesensorsdemonstratedinfluencefemoralcausingsignificantincreaselatenciesairresultsshowspecificsignalsdetermineswing-to-stancetransitionsteppingadditionalmayalsorespectinvestigatedappearelicitedroleactivitywalkingsensingcomparison

Similar Articles

Cited By