The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins.

Stephanie Luu, Jose Cruz-Mora, Barbara Setlow, Florence E Feeherry, Christopher J Doona, Peter Setlow
Author Information
  1. Stephanie Luu: Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA.
  2. Jose Cruz-Mora: Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA.
  3. Barbara Setlow: Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA.
  4. Florence E Feeherry: U.S. Army-Natick Soldier RD&E Center, Warfighter Directorate, Natick, Massachusetts, USA.
  5. Christopher J Doona: U.S. Army-Natick Soldier RD&E Center, Warfighter Directorate, Natick, Massachusetts, USA.
  6. Peter Setlow: Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA setlow@nso2.uchc.edu.

Abstract

Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75 °C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the L-asparagine-glucose-fructose-K(+) mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.

References

  1. Appl Opt. 2006 Jan 20;45(3):445-50 [PMID: 16463727]
  2. J Bacteriol. 2010 Jul;192(13):3424-33 [PMID: 20435722]
  3. Trends Microbiol. 2013 Jun;21(6):296-304 [PMID: 23540831]
  4. PLoS One. 2013;8(5):e64011 [PMID: 23691138]
  5. Chem Soc Rev. 2006 Oct;35(10):908-17 [PMID: 17003897]
  6. J Bacteriol. 2013 Jul;195(13):3009-21 [PMID: 23625846]
  7. J Bacteriol. 2013 Aug;195(16):3575-82 [PMID: 23749970]
  8. PLoS One. 2013;8(9):e74987 [PMID: 24058645]
  9. J Appl Microbiol. 2013 Dec;115(6):1251-68 [PMID: 24102780]
  10. J Food Sci. 2014 Feb;79(2):M230-7 [PMID: 24547697]
  11. J Bacteriol. 2014 Apr;196(7):1297-305 [PMID: 24488313]
  12. J Appl Microbiol. 2014 Sep;117(3):711-20 [PMID: 24891141]
  13. J Bacteriol. 2000 May;182(9):2513-9 [PMID: 10762253]
  14. J Bacteriol. 2000 Oct;182(19):5505-12 [PMID: 10986255]
  15. Appl Environ Microbiol. 2002 Jun;68(6):3172-5 [PMID: 12039788]
  16. J Bacteriol. 2003 Apr;185(8):2457-64 [PMID: 12670969]
  17. J Bacteriol. 2004 May;186(10):2984-91 [PMID: 15126458]
  18. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7733-8 [PMID: 15126669]
  19. Biochem Biophys Res Commun. 1969 Dec 4;37(6):909-16 [PMID: 4982876]
  20. J Bacteriol. 1973 Apr;114(1):137-43 [PMID: 4698206]
  21. Appl Environ Microbiol. 1987 Feb;53(2):365-70 [PMID: 3566270]
  22. Appl Environ Microbiol. 1988 Oct;54(10):2515-20 [PMID: 3202631]
  23. J Appl Bacteriol. 1990 Sep;69(3):414-20 [PMID: 2123174]
  24. J Bacteriol. 1996 Jun;178(12):3486-95 [PMID: 8655545]
  25. J Bacteriol. 1999 Jun;181(11):3341-50 [PMID: 10348844]
  26. J Food Prot. 2004 Nov;67(11):2530-7 [PMID: 15553637]
  27. J Appl Microbiol. 2007 Jan;102(1):65-76 [PMID: 17184321]
  28. J Microbiol Methods. 2007 Feb;68(2):353-7 [PMID: 17055602]
  29. Crit Rev Food Sci Nutr. 2007;47(1):69-112 [PMID: 17364696]
  30. J Bacteriol. 2010 Jul;192(14):3608-19 [PMID: 20472791]
  31. PLoS One. 2010;5(8):e12285 [PMID: 20808871]
  32. Res Microbiol. 2010 Dec;161(10):830-7 [PMID: 20870021]
  33. J Am Chem Soc. 2011 Apr 20;133(15):6020-7 [PMID: 21446709]
  34. Biochim Biophys Acta. 2011 Aug;1814(8):934-41 [PMID: 20934540]
  35. J Bacteriol. 2011 Aug;193(16):4143-52 [PMID: 21685283]
  36. Mol Microbiol. 2011 Aug;81(4):1061-77 [PMID: 21696470]
  37. J Bacteriol. 2011 Sep;193(18):4664-71 [PMID: 21725007]
  38. Annu Rev Food Sci Technol. 2011;2:203-35 [PMID: 22129381]
  39. J Food Prot. 2011 Dec;74(12):2079-89 [PMID: 22186048]
  40. Appl Environ Microbiol. 2012 Apr;78(8):2689-97 [PMID: 22327596]
  41. J Bacteriol. 2012 Jun;194(12):3156-64 [PMID: 22493018]
  42. J Bacteriol. 2012 Jul;194(13):3417-25 [PMID: 22522895]
  43. PLoS One. 2013;8(1):e54740 [PMID: 23349961]
  44. Antonie Van Leeuwenhoek. 2013 Mar;103(3):693-700 [PMID: 23132276]
  45. J Bacteriol. 2013 Apr;195(7):1484-91 [PMID: 23335419]
  46. PLoS Pathog. 2013 May;9(5):e1003356 [PMID: 23675301]
  47. J Appl Microbiol. 2005;98(3):606-17 [PMID: 15715863]
  48. Appl Environ Microbiol. 2005 Oct;71(10):5879-87 [PMID: 16204500]
  49. J Bacteriol. 2006 Jan;188(1):28-36 [PMID: 16352818]
  50. FEMS Microbiol Lett. 2008 Apr;281(1):1-9 [PMID: 18279335]
  51. J Bacteriol. 2008 Oct;190(20):6741-8 [PMID: 18723620]
  52. Opt Express. 2009 Sep 14;17(19):16480-91 [PMID: 19770863]
  53. Int J Food Microbiol. 2010 Apr 30;139(1-2):108-15 [PMID: 20153067]
  54. Appl Microbiol Biotechnol. 2010 Jun;87(2):527-36 [PMID: 20309541]
  55. Appl Environ Microbiol. 2006 May;72(5):3476-81 [PMID: 16672493]

MeSH Term

Bacillus
Bacillus subtilis
Bacterial Proteins
Hot Temperature
Lipid Metabolism
Pressure
Spores, Bacterial
Temperature

Chemicals

Bacterial Proteins
spore-specific proteins, Bacillus

Word Cloud

Created with Highcharts 10.0.0heatactivationgerminationsporesGRsBacillusviaGRHPspores'IMratesnutrienthighrequirementseffectsstimulateddifferentrequiredGerKoptimalvariouspressureMPaexhibitedGerDproteinresultsconsistentsporealsoaffectingNutrientspeciesoccursgerminantreceptorsinnermembraneprocesssublethalsubtilismaximum75°Ctimes:15minl-valineGerA4hL-asparagine-glucose-fructose-K+mixtureGerBrequiringcasesdecreasedconcentrationshalf-maximalGermination150similarlossfunctioneliminatemaximalactingprimarilyHoweverconformationprobedbiotinylationexternalreagentiipreparedlowtemperaturesaffectpropertieslargedifferencesiii550affectedrelativelyindependentlastindirectly150-550-MPagerminationsamyloliquefacienspotentialsurrogateClostridiumbotulinumtreatmentsfoodsnutrientswithoutproteins

Similar Articles

Cited By (32)