Cerebellar gray and white matter volume and their relation with age and manual motor performance in healthy older adults.

Vincent Koppelmans, Sarah Hirsiger, Susan Mérillat, Lutz Jäncke, Rachael D Seidler
Author Information
  1. Vincent Koppelmans: School of Kinesiology, University of Michigan, Ann Arbor, Michigan.

Abstract

OBJECTIVES: Functional neuroimaging and voxel-based morphometry studies have confirmed the important role of the cerebellum in motor behavior. However, little is known about the relationship between cerebellar gray (GMv) and white matter (WMv) volume and manual motor performance in aging individuals. This study aims to quantify the relationship between cerebellar tissue volume and manual motor performance.
EXPERIMENTAL DESIGN: To gain more insight into cerebellar function and how it relates to the role of the primary motor cortex (M1), we related cerebellar GMv, WMv, and M1v to manual motor performance in 217 healthy older individuals. Left and right cerebellar GMv and WMv, and M1v were obtained using FreeSurfer. The following motor measures were obtained: grip force, tapping speed, bimanual visuomotor coordination, and manual dexterity.
PRINCIPAL OBSERVATIONS: Significant positive relationships were observed between cerebellar GMv and WMv and grip strength, right cerebellar WMv and right-hand tapping speed, right cerebellar WMv and dexterity, M1v and grip strength, and right M1v and left-hand dexterity, though effect sizes were small.
CONCLUSIONS: Our results show that cerebellar GMv and WMv are differently associated with manual motor performance. These associations partly overlap with the brain-behavior associations between M1 and manual motor performance. Not all observed associations were lateralized (i.e., ipsilateral cerebellar and contralateral M1v associations with motor performance), which could point to age-related neural dedifferentiation. The current study provides new insights in the role of the cerebellum in manual motor performance. In consideration of the small effect sizes replication studies are needed to validate these results.

Keywords

References

  1. Front Hum Neurosci. 2013 Feb 07;7:27 [PMID: 23403800]
  2. Hum Brain Mapp. 2002 Nov;17(3):143-55 [PMID: 12391568]
  3. Neurosci Biobehav Rev. 2014 May;42:193-207 [PMID: 24594194]
  4. PLoS One. 2011;6(12):e29411 [PMID: 22216274]
  5. Neuron. 2002 Jan 31;33(3):341-55 [PMID: 11832223]
  6. Neurobiol Aging. 2008 Jun;29(6):882-90 [PMID: 17239994]
  7. Cereb Cortex. 2008 Feb;18(2):433-42 [PMID: 17575289]
  8. Neuroimage. 2008 Nov 15;43(3):470-7 [PMID: 18755279]
  9. J Comp Neurol. 2003 Nov 17;466(3):356-65 [PMID: 14556293]
  10. Neurology. 1999 Jul 13;53(1):189-96 [PMID: 10408558]
  11. Front Hum Neurosci. 2014 Nov 11;8:915 [PMID: 25426059]
  12. Cortex. 2011 Apr;47(4):441-50 [PMID: 20167312]
  13. Curr Alzheimer Res. 2013 Nov;10(9):964-72 [PMID: 24117117]
  14. Cereb Cortex. 1999 Oct-Nov;9(7):712-21 [PMID: 10554994]
  15. Exp Brain Res. 2010 May;203(1):21-30 [PMID: 20217399]
  16. Neurobiol Aging. 2005 Oct;26(9):1261-70; discussion 1275-8 [PMID: 16005549]
  17. J Neurophysiol. 2000 Jan;83(1):528-36 [PMID: 10634893]
  18. Neuroimage. 1999 May;9(5):497-507 [PMID: 10329289]
  19. Biol Psychiatry. 2009 Dec 15;66(12):1100-6 [PMID: 19660739]
  20. Epilepsy Behav. 2013 Aug;28(2):156-62 [PMID: 23747499]
  21. Cerebellum. 2012 Jun;11(2):457-87 [PMID: 22161499]
  22. Cereb Cortex. 2003 Sep;13(9):943-9 [PMID: 12902393]
  23. Neuroreport. 2004 Jun 7;15(8):1279-82 [PMID: 15167549]
  24. Hum Brain Mapp. 2009 Dec;30(12):4048-53 [PMID: 19507158]
  25. Neurobiol Aging. 2010 Sep;31(9):1554-62 [PMID: 18926601]
  26. Neurobiol Aging. 2001 Jul-Aug;22(4):581-94 [PMID: 11445259]
  27. Postgrad Med J. 2007 Feb;83(976):109-14 [PMID: 17308214]
  28. Biol Psychiatry. 2007 Feb 1;61(3):374-81 [PMID: 16945351]
  29. Hum Brain Mapp. 2009 Aug;30(8):2453-65 [PMID: 19172654]
  30. Radiology. 2010 Mar;254(3):942-8 [PMID: 20177104]
  31. Neuropsychology. 2000 Jul;14(3):341-52 [PMID: 10928737]
  32. Neuroimage. 2005 Oct 1;27(4):909-18 [PMID: 15993627]
  33. Nat Neurosci. 2001 Jun;4(6):638-44 [PMID: 11369946]
  34. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:2342-6 [PMID: 22254811]
  35. Neuroimage. 2009 May 15;46(1):39-46 [PMID: 19457380]
  36. BMJ. 1998 Apr 18;316(7139):1236-8 [PMID: 9553006]
  37. Neuroimage Clin. 2012 Dec 06;2:103-10 [PMID: 24179763]
  38. Brain. 2004 Jun;127(Pt 6):1292-301 [PMID: 15069019]
  39. Neurobiol Aging. 2012 Dec;33(12):2774-81 [PMID: 22405042]
  40. Ann Neurol. 2009 Jun;65(6):706-15 [PMID: 19557865]
  41. Neuroimage. 2010 Feb 1;49(3):2045-52 [PMID: 19857577]
  42. Eur Neurol. 2005;54(1):23-7 [PMID: 16088175]
  43. J Korean Med Sci. 2002 Aug;17(4):530-6 [PMID: 12172051]
  44. Cereb Cortex. 2013 Oct;23(10):2282-92 [PMID: 22892425]
  45. J Hypertens. 2013 Aug;31(8):1502-16 [PMID: 23811995]
  46. Cereb Cortex. 2004 Jan;14(1):11-22 [PMID: 14654453]
  47. Neuroimage. 2008 Aug 1;42(1):343-56 [PMID: 18511305]
  48. Gerontology. 2011;57(2):190-2 [PMID: 21307637]
  49. IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20 [PMID: 20378467]
  50. Exp Gerontol. 2011 Jun;46(6):453-61 [PMID: 21296649]
  51. Front Aging Neurosci. 2014 Sep 25;6:259 [PMID: 25309436]
  52. AJNR Am J Neuroradiol. 1998 Jan;19(1):65-71 [PMID: 9432159]
  53. AJNR Am J Neuroradiol. 2010 Sep;31(8):1430-7 [PMID: 20448013]
  54. J Physiol. 2008 Mar 1;586(5):1217-24 [PMID: 18187462]
  55. Psychol Methods. 2003 Dec;8(4):434-47 [PMID: 14664681]
  56. Neurobiol Aging. 2012 Sep;33(9):1890-9 [PMID: 21813213]
  57. Neurosci Biobehav Rev. 2010 Apr;34(5):721-33 [PMID: 19850077]
  58. Neuroimage. 2004 Oct;23(2):724-38 [PMID: 15488422]
  59. Muscle Nerve. 2002 Oct;26(4):506-12 [PMID: 12362416]
  60. Cerebellum. 2012 Mar;11(1):167-80 [PMID: 21717230]
  61. Neurosci Lett. 2004 Nov 23;371(2-3):185-9 [PMID: 15519754]
  62. Cereb Cortex. 2004 Jul;14(7):721-30 [PMID: 15054051]
  63. Brain. 2001 Jan;124(Pt 1):60-6 [PMID: 11133787]
  64. Prog Brain Res. 2010;186:3-12 [PMID: 21094882]
  65. Neuroimage. 2012 Jan 16;59(2):1615-21 [PMID: 21925277]
  66. Cerebellum. 2013 Oct;12(5):721-37 [PMID: 23625382]
  67. J Gerontol A Biol Sci Med Sci. 2014 Aug;69(8):996-1003 [PMID: 24170673]
  68. Neuroimage. 2012 Jan 16;59(2):1647-56 [PMID: 21963915]
  69. Neurology. 2011 Aug 2;77(5):461-8 [PMID: 21810696]
  70. Cerebellum. 2014 Feb;13(1):151-77 [PMID: 23996631]
  71. Neuropsychologia. 1994 Feb;32(2):265-9 [PMID: 8190250]

MeSH Term

Aged
Aging
Cerebellum
Female
Functional Laterality
Gray Matter
Hand Strength
Humans
Image Processing, Computer-Assisted
Longitudinal Studies
Magnetic Resonance Imaging
Male
Motor Cortex
Motor Skills
Organ Size
White Matter

Word Cloud

Created with Highcharts 10.0.0motorcerebellarmanualperformanceWMvGMvM1vmattervolumerightassociationsrolecerebellumgraywhitegripdexteritystudiesrelationshipindividualsstudyfunctionM1healthyoldertappingspeedobservedstrengtheffectsizessmallresultsOBJECTIVES:Functionalneuroimagingvoxel-basedmorphometryconfirmedimportantbehaviorHoweverlittleknownagingaimsquantifytissueEXPERIMENTALDESIGN:gaininsightrelatesprimarycortexrelated217LeftobtainedusingFreeSurferfollowingmeasuresobtained:forcebimanualvisuomotorcoordinationPRINCIPALOBSERVATIONS:Significantpositiverelationshipsright-handleft-handthoughCONCLUSIONS:showdifferentlyassociatedpartlyoverlapbrain-behaviorlateralizedieipsilateralcontralateralpointage-relatedneuraldedifferentiationcurrentprovidesnewinsightsconsiderationreplicationneededvalidateCerebellarrelationageadultsMRI

Similar Articles

Cited By